
The Pintos Instructional Operating System Kernel

Ben Pfaff
Nicira Networks

Palo Alto, CA
blp@nicira.com

Anthony Romano
Stanford University

Palo Alto, CA
ajromano@stanford.edu

Godmar Back
Virginia Tech
Blacksburg

gback@cs.vt.edu

ABSTRACT
Pintos is an instructional operating system, complete with
documentation and ready-made, modular projects that in-
troduce students to the principles of multi-programming,
scheduling, virtual memory, and filesystems. By allowing
students to run their work product on actual hardware, while
simultaneously benefiting from debugging and dynamic anal-
ysis tools provided in simulated and emulated environments,
Pintos increases student engagement. Unlike tailored ver-
sions of commercial or open source OS such as Linux, Pintos
is designed from the ground up from an educational perspec-
tive. It has been used by multiple institutions for a number
of years and is available for wider use.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education

General Terms
Design, Experimentation

Keywords
Pintos, instructional operating system, instructional kernel

1. INTRODUCTION
Despite the wide use of higher-level languages and envi-

ronments, gaining a robust understanding of operating sys-
tems (OS) fundamentals and training in the current design
and implementation practices of OS remains a cornerstone
of undergraduate computer science education.

Approaches to teaching OS courses generally fall along two
axes: whether the treatment of the material is abstract or
concrete [13], and whether they adopt an internal or external
perspective [8]. An abstract approach discusses algorithms
and techniques used in operating systems and may include
partial implementation or simulation exercises, whereas a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’09, March 3–7, 2009, Chattanooga, Tennessee, USA.
Copyright 2009 ACM 978-1-60558-183-5/09/03 ...$5.00.

concrete approach stresses the design and creation of real-
istic artifacts. When adopting the internal perspective, an
operating system is considered from the point of view of the
OS designer, whereas the external perspective assumes the
role of a user or programmer using an OS’s facilities [5].

The approach advocated in this paper is concrete and
adopts the internal perspective. Students who have stud-
ied, implemented, and evaluated core OS techniques attain
a deeper understanding than those who have merely studied
them. Finally, adopting a concrete approach brings signifi-
cant secondary benefits, including training in modern soft-
ware development techniques and tools. The C language re-
mains the implementation language of choice for operating
system kernels and for many embedded systems. Practice
and debugging experience in C, particularly using modern
tools, not only increases students’ “market value,” [10] but
provides students with the insight that a low-level program-
ming and runtime model is not incompatible with high-level
tools.

Designing course material for the internal and concrete
approach is challenging. While realistic, assignments should
be relatively simple and doable within a realistic time frame.
Whereas assignments should use current hardware architec-
tures, they must not impart too much transient knowledge.
Assignments should include and emphasize the use of mod-
ern software engineering practices and tools, such as dy-
namic program analysis.

This paper introduces Pintos, an instructional operating
system kernel that has been in use at multiple institutions
for about 4 years. Pintos provides a bootable kernel for
standard x86-based personal computers. We provide four
structured assignments in which students implement a basic
priority scheduler, a multi-level feedback queue scheduler,
a process-based multi-programming system, page-based vir-
tual memory including on-demand paging, memory-mapped
files, and swapping, and a simple hierarchical file system. An
overview of the projects enabled by Pintos is given in Fig-
ure 2, which shows which software is provided as support
code and test cases, the parts that are created by students,
and their relationship.

Although Pintos follows in the tradition of instructional
operating systems such as TOY OS [9], Nachos [6], OS/161
[12], and GeekOS [13], PortOS [2], BLITZ [16], JOS [1], or
Yalnix [1], we believe that it is unique in two aspects. First,
Pintos runs on both real hardware and in emulated and sim-
ulated environments.1 We believe that having the ability to

1GeekOS is the only other system that claims to also run on real
PC hardware; it requires, however, a dedicated disk and does not

453

see the outcome of their project interact with actual hard-
ware increases student engagement. Second, we have created
a set of analysis tools for the emulated environment that al-
lows students to detect programming mistakes such as race
conditions. Figure 1 shows the three environments in which
the same kernel can be run.

Others have used Linux, either on dedicated devices (e.g.,
iPodLinux [14]), or in virtualized environments [7, 11, 15],
to provide an internal, concrete perspective. Compared to
those approaches, Pintos provides a similar level of realism
in that students can see the results of their work on concrete
or virtualized hardware, but does not require that students
understand the often arcane and ill-documented interfaces
of the Linux kernel, which were not designed from an edu-
cational perspective. By contrast, all Pintos code is written
to be studied by students.

Pintos Apps Pintos Apps Pintos Apps

Pintos Kernel

Emulation via Qemu

Pintos Kernel Pintos Kernel

Test Hardware
Standard PC with USB

Simulation via Bochs
Emulation via Qemu

Program Analysis

Serial Port
GradingCompiler/

Development Machine

Debugger
Grading
Scripts

Terminal
Emulator

Compiler/
Toolchain

Figure 1: The same Pintos instructional kernel runs
in a fully reproducible simulated environment, in
an enhanced emulated environment with dynamic
analysis capability, and on actual hardware.

2. DESIGN PRINCIPLES
Pintos’s projects are built on a number of principles.

Read before you Code.
Each project involves a significant amount of reading code

before students write the first line of code. Because software
maintenance constitutes the vast majority of all software de-
velopment efforts [4], this setup mirrors the environment in
which most software engineers work. Simultaneously, we
limit the amount students have to read by encapsulating
lower layers, such as device drivers. We went to great lengths
to write the entire Pintos baseline code, and in particular the
portions students must read, in a style that shows, by exam-
ple, the coding style we expect from students. We contin-
uously refined the internal code documentation over several
semesters, focusing on those portions that initially proved
difficult to understand.

Maximize Creative Freedom.
OS design involves a tremendous amount of creative free-

dom, both in the choice of algorithms and data structures.
Our projects are designed to stimulate creativity by avoiding
the prescription of specific approaches to accomplish each
project’s goals. Instead, students design their own data
structures and associated algorithms as much as possible.

support running off USB devices, making it impractical for many
laboratory settings.

Project Functionality Robustness Regression
1 27 - -
2 41 35 -
3 20 14 75
4 39 7 75

Table 1: Pintos test cases by project.

Practice Test-driven Development.
Each project includes a large number of test cases that

are accessible to students, as shown in Table 1. They must
implement the API that is exercised by these test cases.
Students are encouraged to add their own test cases.

Work in a Team.
The projects presented in this paper are designed to be

accomplished by teams of 2-4 students. Working in a team
provides an environment that more closely resembles indus-
trial software development, and it provides a way for stu-
dents to brainstorm and implement together. In addition,
we teach and require the use of group collaboration tools,
notably shared source code version control systems such as
CVS.

Justify your Design.
Design justification and rationale is as important for learn-

ing as creating an artifact that fulfills a set of given require-
ments. We designed a set of structured questionnaires in
which students describe their design and discuss choices and
trade-offs they made.

Provide a Reproducible, Manageable Environment.
Operating Systems are inherently concurrent environments,

which can be difficult to debug. For educational use, we
must provide an environment that is manageable and re-
producible, which we do by providing the option of running
Pintos in a simulated, fully deterministic environment. As
a result, Pintos kernels can be debugged in a manner that
is substantially similar to how user programs are being de-
bugged.

Include Analysis Tools.
Dynamic analysis tools are now being widely used in soft-

ware development; an OS course should be no exception. In
Section 4, we describe how we extended the QEMU emula-
tor [3] to perform tailored analyses that find errors such as
race conditions.

Provide Extensive and Structured Documentation.
If using an instructional system requires too much undoc-

umented knowledge, the system is often not shared or falls
into disuse because the learning curve for instructors is too
steep and training teaching assistants is difficult. Pintos
includes an extensive 129 page manual, a sample solution,
and grading instructions for teaching assistants. The project
documentation highlights sections students must read from
sections that merely provide supplemental information.

3. PINTOS PROJECTS
The Pintos instructional operating system is split into four

projects.

454

P3: Virtual Memory
P4: Extended

Filesystem
Stress Tests P2-4: Robustness

P2-4:
Basic Filesystem

Usermode
Test Cases

P2-4: System Call Functionality

P2: System Call Layer: Copy-in/out, FD Management

P2: Process Management
P1: Kernel-mode Test Cases

MLFQS Scheduling

Priority Scheduling Alarm
Clock

P3: Memory-mapped Files

P1: Alarm
Clock P3: Page

Fault
Handling

P3: Address Space
Manager

P1: Priority
Inheritance

P1: Kernel mode Test Cases

3

P4: Hierarchical
Multi-threaded

MMU
SupportP1: Priority Scheduler

P1: MLFQS
HandlingInheritance

l

Physical
Memory
Manager

P3: Page
Replacement

Multi threaded
Filesystem

Device Support
Keyboard, VGA, USB, Serial Port, Timer, PCI, IDE

Threading
Simple Scheduler

P1: Priority Scheduler
Basic FilesystemManager

Pintos Kernel
Boot Support

Support Code

Students CreateStudents Create

Public Tests

Figure 2: Components of Pintos split in provided support code, test cases, and components created in
assignments. Overlapping components indicate when students have to replace parts of the support code.

3.1 Project 1 – Threads
Project 1 revolves around threads. The baseline Pintos

code boots into a kernel that supports multiple in-kernel
threads. It provides code for initialization, thread creation
and destruction, context switches, thread blocking and un-
blocking as well as a simple but preemptive round-robin
scheduler. Students study the existing, barebones thread-
ing system (about 600 lines of C code) to understand how
threads are created and destroyed, and to understand the
transitioning of threads between the READY, RUNNING,
and BLOCKED states. They also study how a thread’s in-
ternal memory is managed, which is used to store its runtime
stack and thread control block. Students can examine the
context switch code, but the projects do not involve any
modifications to it.

After reading the baseline code, the project asks students
to implement several features that exercise thread state tran-
sitions. The first part of this project includes a simple alarm
clock, which requires maintaining a timer queue of sleeping
threads and changing the timer interrupt handler to unblock
those threads whose wakeup time has arrived. Students
learn how to protect data structures that are shared be-
tween a thread and an interrupt handler. The second part
of the project constitutes a strict priority-based uniprocessor
scheduler; students learn about the different ways in which
such a scheduler must react to thread state changes.

Based on the priority scheduler, students implement pri-
ority inheritance, which deepens their understanding of the
interaction of threads and locks. We use the example of
the near-failure of the Mars PathFinder mission to motivate
the need for priority inheritance. Separately, students build
a multi-level feedback queue scheduler on top of the strict
priority scheduler. This scheduler adjusts threads’ priorities

based on a sampling of how much CPU time a thread has
received recently.

Testing and Grading.
Project 1 is accompanied by 27 tests as shown in Table 1,

which are run by a grading script using the Bochs simula-
tor. Most of the tests are designed to produce deterministic
output; the grading script will point out differences between
expected and actual output. Usually, a test failure leads
students to study the documented source code of the test
and understand how the expected output derives from it.

The MLFQS scheduler tests require a different approach.
Since those tests rely on estimating CPU usage, they de-
pend on how much CPU time a specific implementation uses,
which in turn depends on how efficient it is. We compute the
expected CPU consumption values by simulation and pro-
vide an envelope within which the output is accepted. The
envelope is large enough to allow for minor inefficiencies, but
major inefficiencies will usually lead to test failures. Such
failures convey the importance of using efficient algorithms
and data structures within an OS kernel.

Learning Objectives.
Project 1 has three learning objectives. First, students

will understand how the illusion that “computers can do
multiple things at once” is created by a sequence of thread
state transitions and context switches. Second, they will un-
derstand how sophisticated scheduling policies can be built
on top of a simple priority-based scheduler. Third, having
seen the mechanisms a preemptive scheduler uses to create
apparent concurrency, students gain a better intuition of the
non-determinism inherent in concurrent systems.

455

3.2 Project 2 – User Programs
The second project illustrates how an OS implements pro-

tection and isolation between user processes, how user pro-
cesses access kernel services, and how user processes lay out
the virtual address space in which their program and data is
contained. Students first add support to Pintos to load and
execute user programs. We kept the provided code purpose-
fully minimal to only a library that reads the text and data
segments of ELF binaries. These binaries are loaded into a
new address space; the baseline code includes functionality
to allocate physical memory and set up a page directory to
establish the process’s virtual address mappings.

Students implement support for a small set of system calls
that allow processes to perform I/O, start new processes,
wait for their termination, and exit. Both the Pintos user
process model and system call API are modeled after tra-
ditional Unix, with the exception that Pintos does not sep-
arate process creation (i.e., fork()) from program loading
(i.e., exec) - instead, Pintos’s exec() system call combines
these two pieces of functionality into one. The implemen-
tation of these calls requires the students to keep track of
per-process resources such as file descriptors, which deepens
their understanding of how an operating system provides the
abstraction of a process.

Like most OS, Pintos exploits dual-mode operation in
which user processes run in a nonprivileged mode. Processes
attempting to bypass these restrictions are terminated. Stu-
dents implement the system call handling code, a key as-
pect of which includes the careful examination of arguments
passed by user processes.

Project 2 also illustrates concurrent programming tech-
niques, notably fork/join parallelism, which students imple-
ment using rendezvous-style synchronization when providing
support for the exec()/wait()/exit() system calls.

Testing and Grading.
All tests for Project 2 are user programs written in C.

They are divided into functionality and robustness tests.
Functionality tests check that the operating system provides
the specified set of services when it is used as expected.
Robustness tests check that the OS rejects all attempts at
passing invalid input to system calls. To pass those tests, the
student’s kernel must be “bullet-proof.” We include a stress
test in which we artificially induce low memory conditions by
creating a large number of processes and pseudo-randomly
introducing failures in some of them. We expect the kernel
to fully recover from such situations.

Learning Objectives.
Students learn how the thread abstraction is extended into

the process abstraction, which combines a thread, a virtual
address space, and its associated resources. Project 2 en-
ables students to understand how operating systems employ
dual-mode operation to implement isolation between pro-
cesses and to protect system resources even in the presence
of failing or misbehaving processes. Students understand
how processes transition into the kernel to access its ser-
vices, and how kernels implement such services in a robust
way. The principles learned in this exercise carry over to all
scenarios in which applications must be robust in the face of
input coming from untrusted sources and uncertain resource
availability, as is the case in many server systems.

3.3 Project 3 – Virtual Memory
Project 3 asks students to implement several virtual mem-

ory techniques, including on-demand paging of programs,
stack growth, page replacement, and memory-mapped files.
This functionality is primarily implemented in a page fault
handler routine. We provide supporting code to create and
maintain page directories, which hide the x86-specifics of
how to program the memory management unit (MMU) and
how to ensure consistency with the CPU’s translation look-
aside buffer (TLB). As a result, students can treat the MMU
as an abstract device in which to install, update, or remove
virtual-to-physical address mappings. Consequently, they
are free to choose any design for the data structures needed
to keep track of the state of each page or region in a process’s
virtual address space.

In early offerings, this significant creative freedom came at
the cost that some students were lost as to how to accomplish
set goals. We added an intermediate design review stage
to this project using a structured questionnaire in which
students outline their planned design. We also provided a
suggested order of implementation.

Like Project 2, Project 3 requires the use of concurrent
programming techniques. Since the Pintos kernel is fully
preemptive, students must consider which data structures
require locking, and they must design a locking strategy that
both avoids deadlock and unnecessary serialization.

Testing and Grading.
Project 3 relies on Project 2, therefore, we include all

tests provided with Project 2 as regression tests to ensure
that system call functionality does not break in the presence
of virtual memory. Furthermore, we provide tests for the
added functionality that lends itself to such testing, namely,
memory-mapped files and stack growth. Some of the project
tasks, such as on-demand paging, are performance-enhancing
techniques that do not directly add functionality that is ap-
parent to user programs; these tasks are graded by inspec-
tion. We test the students page replacement code by varying
the amount of physical memory available to the kernel when
run under emulation, relative to the amount of memory that
is accessed by our test programs. Grossly inefficient page re-
placement schemes result in test failures due to time-outs.

Learning Objectives.
Students learn how an OS creates the environment in

which a user program executes as it relates to the program’s
code and variables. It provides a thorough understanding
of how OS use resumption after page faults to virtualize a
process’s use of physical memory. Students gain hands-on
experience with page replacement algorithms and have the
opportunity to directly observe their performance impact.

3.4 Project 4 – Filesystems
Project 4 asks students to design and implement a hi-

erarchical, multi-threaded filesystem and buffer cache. In
Projects 2 and 3, students use a basic filesystem we provide
to access the disk, which supports only fixed-size files, no
subdirectories, and which lacks a buffer cache. Although
we suggest a traditional, Unix-like filesystem design, which
stores file metadata in inodes and treats directories as files,
students have complete freedom in designing the layout of
their filesystem’s metadata. Since our host tools will not
know how to interpret the student’s filesystems, we attach

456

an intermediate “scratch” disk or partition to the physical
or virtual computer on which Pintos runs, and use the stu-
dent’s kernel to copy files into and out of their filesystems.
Similarly, we encourage students to experiment with differ-
ent replacement strategies for their buffer cache, although
we require that their algorithm behaves at least as well as a
least-recently-used (LRU) strategy.

As with all projects, this assignment includes additional
concurrent programming tasks: in this project, we suggest
that students implement a multiple-reader, single-writer ac-
cess scheme for individual buffer cache blocks to allow shared
access when reading file data and metadata.

Testing and Grading.
Project 4 adds a new set of test cases for the extended

functionality, including stress tests that check correct behav-
ior for deeply nested directories and for nearly full disks. For
each functionality test, we provide a sibling persistence test
that verifies that the changes done to the filesystem survive
a shutdown and restart. Since the project does not require
the virtual memory functionality, it can be built on either
Project 2 or 3, depending on the instructor’s judgment.

Learning Objectives.
This project provides a deep understanding of how OS’s

manage secondary storage while avoiding fragmentation and
providing efficiency for commonly occurring disk access pat-
terns. Students learn how the use of a buffer cache helps
absorb disk requests and improves performance. They also
gain insight into filesystem semantics in the presence of si-
multaneously occurring requests.

4. DYNAMIC ANALYSIS TOOLS
Data races and invalid memory accesses are some of the

most common and difficult to debug errors that may occur
in concurrent C code. We developed dynamic analysis tools
that run on top of the QEMU system emulator [3] to help
detect these mistakes. Since these tools do not require ad-
ditional support from the Pintos kernel, students can use
them without complicating their code.

Data races are found by using a semaphore-aware modi-
fication of the RaceTrack algorithm [17]. Calls to Pintos’s
synchronization primitives are instrumented at runtime to
track every thread’s data sharing pattern. Meanwhile, ev-
ery memory access records synchronization information to
shadow memory maintained by the analysis tool. When the
synchronization information for a memory address indicates
that a data race occurred, a report including heap informa-
tion for the data location and the call stacks for the racing
threads is generated.

Invalid memory accesses, such as a read from newly al-
located but uninitialized data, are detected by tracking all
memory accesses. Heap allocation calls are instrumented to
map a range of addresses as uninitialized. When data is
written to a memory address, it is marked as initialized. If
an address marked as uninitialized is read from, an error is
reported.

Each of our tools presents students with one or more con-
crete backtraces that show where the error occurred, which
not only helps students debug their code, but makes the
concept of race conditions more concrete.

5. FUTURE WORK
In the future, we will expand Pintos’s analysis capabili-

ties to provide quantitative information and include realis-
tic device models. We are also considering extending Pintos
to multiple CPUs and assignments that involve networking
and interprocess communication (IPC). Although we have
received highly favorable feedback from our industrial affili-
ates, who compare students having used Pintos to students
having taken courses that use less concrete or external ap-
proaches, we need to perform a formal evaluation to compare
learning outcomes using Pintos to other alternatives.

6. REFERENCES
[1] C. L. Anderson and M. Nguyen. A survey of contemporary

instructional operating systems for use in undergraduate
courses. J. Comput. Small Coll., 21(1):183–190, 2005.

[2] B. Atkin and E. G. Sirer. PortOS: an educational operating
system for the Post-PC environment. In SIGCSE ’02:
Proceedings of the 33rd SIGCSE technical symposium on
Computer science education, pages 116–120, New York,
NY, USA, 2002. ACM.

[3] F. Bellard. Qemu, a fast and portable dynamic translator.
In ATC’05: Proc. USENIX Annual Technical Conference,
page 41, Berkeley, CA, USA, 2005. USENIX Association.

[4] B. W. Boehm. Software Engineering Economics. Prentice
Hall PTR, 1981.

[5] R. E. Bryant and D. R. O’Hallaron. Computer Systems: A
Programmer’s Perspective. Prentice Hall, us ed edition,
Aug. 2002.

[6] W. A. Christopher, S. J. Procter, and T. E. Anderson. The
Nachos instructional operating system. In USENIX’93:
Proc. USENIX Winter 1993 Conf., page 4, Berkeley, CA,
USA, 1993. USENIX Association.

[7] R. Davoli. Teaching operating systems administration with
User Mode Linux. In Proc. 9th ITiCSE (ITiCSE ’04),
pages 112–116, 2004.

[8] H. M. Deitel, P. J. Deitel, and D. R. Choffnes. Operating
Systems. Prentice Hall, 3 edition, December 2003.

[9] R. S. Fabry. The TOY operating system. Technical report,
EECS Department, University of California, Berkeley, CA,
Mar. 1983.

[10] A. Gaspar, N. Boyer, and A. Ejnioui. Role of the C
language in current computing curricula part 1: survey
analysis. J. Comput. Small Coll., 23(2):120–127, 2007.

[11] A. Gaspar, S. Langevin, W. D. Armitage, and M. Rideout.
March of the (virtual) machines: past, present, and future
milestones in the adoption of virtualization in computing
education. J. Comput. Small Coll., 23(5):123–132, 2008.

[12] D. A. Holland, A. T. Lim, and M. I. Seltzer. A new
instructional operating system. In SIGCSE ’02: Proc. 33rd
SIGCSE technical symposium, pages 111–115, New York,
NY, USA, 2002. ACM Press.

[13] D. Hovemeyer, J. K. Hollingsworth, and B. Bhattacharjee.
Running on the bare metal with GeekOS. In SIGCSE ’04:
Proc. 35th SIGCSE technical symposium, pages 315–319,
New York, NY, USA, 2004. ACM.

[14] B. Lawson and L. Barnett. Using iPodLinux in an
introductory OS course. SIGCSE Bull., 40(1):182–186,
2008.

[15] J. Nieh and C. Vaill. Experiences teaching operating
systems using virtual platforms and Linux. In SIGCSE ’05:
Proc. 36th SIGCSE technical symposium, pages 520–524,
New York, NY, USA, 2005. ACM Press.

[16] H. H. Porter. An overview of the BLITZ system.
http://web.cecs.pdx.edu/ harry/Blitz/.

[17] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: efficient
detection of data race conditions via adaptive tracking. In
SOSP ’05: Proc. 20th ACM Symposium on Operating
Systems Principles, pages 221–234, New York, NY, USA,
2005. ACM.

457

