
Data Lifetime is a Systems Problem

Tal Gar�nkel, Ben Pfa�, Jim Chow, Mendel Rosenblum
ftalg,blp,jchow,mendelg@cs.stanford.edu

Stanford University Department of Computer Science

Abstract

As sensitive data lifetime (i.e. propagation and
duration in memory) increases, so does the risk of
exposure. Unfortunately, this issue has been largely
overlooked in the design of most of today's operating
systems, libraries, languages, etc. As a result, ap-
plications are likely to leave the sensitive data they
handle (passwords, �nancial and military informa-
tion, etc.) scattered widely over memory, leaked to
disk, etc. and left there for an indeterminate period
of time. This greatly increases the impact of a sys-
tem compromise.

Dealing with data lifetime issues is currently left
to application developers, who largely overlook them.
Security-aware developers who attempt to address
them (e.g. cryptographic library writers) are stymied
by the limitations of the operating systems, lan-
guages, etc. they rely on. We argue that data life-
time is a systems issue which must be recognized and
addressed at all layers of the software stack.

1 Introduction

System compromise is an inevitable part of com-
puter security. Despite our best e�orts, software will
continue to have exploitable bugs and miscon�gura-
tions, and malicious parties will continue to gain
physical access to system hardware. Given this, it
is essential that we build systems to minimize the
impact of compromises.

Reducing the risk of sensitive data exposure is
an essential part of this process. We can reduce
risk by minimizing the amount of sensitive data
(e.g. encryption keys, passwords, military and �-
nancial documents) in a system at any point in its
execution. This also reduces the risk of accidental
leaks.

We refer to the duration of time given sensitive
data remains in a system and how widely it is prop-
agated as data lifetime. As lifetime increases so does
the risk of exposure.

Data lifetime related problems are more subtle
than simple vulnerabilities. Unlike other software
weaknesses (e.g. bu�er over
ows), data lifetime

problems are often not immediately exploitable. In-
stead, they tend to increase the impact of other
exploits. Consequently, data lifetime issues receive
much less attention than more obvious vulnerabili-
ties.

Due to this lack of attention, data lifetime is
rarely addressed in operating systems, programming
languages, etc. Thus, the task of dealing with data
lifetime issues is left to application developers. Un-
fortunately, only the most sophisticated developers
take these issues into account. Even then, the limi-
tations of today's languages and operating systems
make their solutions incomplete, error prone, and
fragile. In practice, software that handles most of
the world's sensitive data is developed in complete
ignorance of data lifetime issues.

We argue that data lifetime problems cannot be
addressed solely by application developers. Instead
they must be addressed by design in every layer of
the software stack by providing safer defaults and

exible mechanisms for dealing with sensitive data.
Only a whole system approach can provide an e�ec-
tive solution to data lifetime problems.

We begin our discussion with a simple model of
data lifetime, an example of data lifetime in a real
system, and an examination of potential threats.
Next, we consider how current systems fail to ad-
dress data lifetime problems. Finally, we discuss
how data lifetime problems can be addressed, and
the design trade-o�s involved with reducing data
lifetime.

2 The Data Lifetime Problem

We de�ne the lifetime of sensitive data in terms
of two components: where copies of this data end
up, and how long these copies survive before being
cleared or otherwise destroyed (i.e. their durations).
Location dictates potential threats, i.e. the meth-
ods by which an attacker can eventually recover the
data. Duration de�nes the window of opportunity
for an attack. Increased duration also increases op-
portunity for propagation, e.g. longer-lived data is
more likely to be paged to disk.

We can de�ne the lifetime L of a piece of sen-



sitive data as a set of tuples in which each tuple
represents a unique copy of the data. Copies need
not be identical, e.g. a password may have a variety
of encodings in its lifetime: Unicode, ASCII, UTF-
8, keyboard scan codes, base-64 encoded, etc. Each
tuple ` 2 L takes the form haddress; birth; deathi;
where address is the copy's location, birth is the
copy's time of creation, and death is the time when
a copy becomes inaccessible e.g. for an encrypted
copy of data either the key was destroyed or the
data was overwritten. We can then de�ne the dura-
tion of a data lifetime L as

max
`2L

`death �min
`2L

`birth;

and the propagation of a data lifetime L to be jLj,
that is, the number of copies of L's data.

2.1 Propagation

Sensitive data propagates through many parts of
a system. For example, in a recent study we traced
a password typed into Mozilla under Linux on its
journey through a system to a wide range of loca-
tions [2]:

1. Interrupt context keyboard queue: Linux reads
keystrokes during a hardware interrupt and ap-
pends them to a circular queue for processing.

2. Process \tty" bu�er: The OS copies charac-
ters from the interrupt-context queue into a tty
bu�er.

3. Window system event queue: The X server reads
characters from the tty bu�er into its own event
queue.

4. Network bu�er: The X server sends the charac-
ters to the X client over a Unix domain socket.
The kernel copies them into a kernel network
bu�er.

5. Widget bu�er: The GTK+ library reads the char-
acters into a bu�er in the password �eld widget
on Mozilla's behalf.

6. String bu�ers: Mozilla and its windowing library
make many copies of password data on the heap
as they pass it around and eventually to the re-
mote host.

None of the copies listed above were erased when
no longer needed. Instead, they were erased only
incidentally as memory was reclaimed and reused
for some other purpose.

Data can propagate to persistent storage through
a wide range of mechanisms largely outside of pro-
grammer control, including the following:

1. Core dump: Under Unix-like systems, core
dumps contain the entire virtual memory image
of a process, including sensitive data. Under
Windows, \Dr. Watson" produces similar output.

2. Hibernation: Laptops and some desktop systems
support \hibernation," a kind of sleep mode that
writes the machine's entire physical memory to
disk, sensitive data included. Hibernation data is
particularly worrisome because it is usually writ-
ten to a dedicated disk partition, making erasure
unlikely.

3. Checkpointing: Systems for process checkpoint-
ing (and migration) typically write the entire
memory image of a process to disk. VMware
Workstation and other virtual machine monitors
can also suspend the state of a virtual machine to
a \checkpoint" �le. Sensitive data in the check-
point can be read from disk, or from network traf-
�c if the checkpoint is transmitted in cleartext.

4. Paging: Virtual memory systems can leak sig-
ni�cant amounts of data to disk through paging.
Even \pinned" kernel memory can be paged if
the OS is run inside a virtual machine monitor
such as VMware Workstation. Due to increas-
ing memory sizes, the amount of data paged to
disk is typically decreasing, but this also implies
that paged out data is being overwritten less fre-
quently.

5. Application Speci�c: A wide range of application
speci�c mechanisms for checkpointing, logging,
serialization etc. can leak sensitive data to disk.
Often this occurs through unintended feature in-
teractions within an application or across compo-
nents, or through use of code for an application
unanticipated by developers.

Propagation to persistent storage greatly in-
creases risk as data is less likely to be overwritten,
persists beyond system reboots, and can be subject
to recovery through direct physical access even if
overwritten [4]. Network storage can lead to leaks
over the network and propagation across machines.

2.2 Threats

Data lifetime issues are an important considera-
tion in a wide range of threat models:

1. Online remote attacks: Remote exploits that can
expose the data of a single user or the entire sys-
tem (i.e. memory and disk) are common. This
class of attack is increasingly important as sys-
tem uptimes increase and increased memory sizes
reduce the frequency that data is overwritten. A



scenario where data sits in memory for days or
even weeks for a given allocator or workload is
not inconceivable.

2. O�ine physical attack: Improper disposal is one
common means. Companies and individuals of-
ten neglect to properly erase disks before selling
or disposing of them [3, 6]. Even when all disk
data has been overwritten, previously stored data
can be recovered [4]. Thus preventing sensitive
data from reaching disk unencrypted is essential.

3. Online physical attack: Tamper-resistant devices
are becoming increasingly commonplace. These
devices are attacked by attempting to directly
tap buses, read memory, etc. Limiting data life-
time can prevent an attacker from gaining access
to sensitive data processed prior to device com-
promise.

4. Accidental leakage: Data can leak from systems
(or to a lower privilege level) through a variety
of channels, e.g. core dumps. For instance, ex-
ploits have been observed in the wild in which an
attacker forces a privileged application to dump
core, disclosing the contents of the shadow pass-
word �le [12]. Some operating systems [15] are
actually programmed to ship private application
memory dumps to the OS vendor. (Broadwell et
al. [1] studied the problem of sensitive data in
core dumps.)

Often data lifetime problems are dismissed en-
tirely when only a particular threat model has been
addressed. For example, a typical encrypted loop-
back device uses a single key that remains constant
between reboots. Using such a device for swap space
can leave data vulnerable for days or even weeks,
limited only by the system's uptime.

3 What's Wrong in Today's Systems

The implementations and interfaces of today's
operating systems, programming languages, li-
braries and other software components generally
overlook data lifetime issues. This creates a vari-
ety of problems when attempting to build systems
that minimize data lifetime:

Virtual memory isn't. Some properties of vir-
tual memory di�er from those of physical mem-
ory, with signi�cant lifetime implications. Physi-
cal memory is generally non-persistent, but virtual
memory may be written to storage through pag-
ing, hibernation, checkpoint, core dump facilities
etc. Data written to storage can persist even if a
system is rebooted or data overwritten. Physical

memory is also generally isolated, i.e. data will only
be accessible to code running in the address space of
the process. Core dumps, process migration, swap-
ping etc. can violate isolation.

The lack of de�nite persistence and isolation
properties of virtual memory makes it very di�cult
for application designers to control or reason about
data lifetime. This is also a problem for operating
systems as all memory becomes virtual when an OS
is hibernated, runs under a virtual machine moni-
tor, etc.

Free isn't the same as dead. Once memory is
deallocated, it is out of the hands of application im-
plementers. Under some circumstances the devel-
opers can manually clear memory prior to dealloca-
tion, but often they have no control. For example,
in most OSes and programming language runtimes
there are no guarantees about data lifetime after a
program crash. In many high level languages the
programmer has limited control over deallocation
and allocators in general take no measures to mini-
mize data lifetime, e.g. by clearing deallocated data.

There is no cooperation. Even if an applica-
tion's code is well behaved with respect to data
lifetime, it relies on an OS, language runtime and
libraries that typically are not. Software imple-
menters must assume that such systems will make
extraneous copies of data passed to them that are
never erased, or perhaps even leaked, e.g. through
error reporting or logging features. This also means
that systems provide no defense in depth: if a devel-
oper makes a mistake, such as forgetting to clear out
a bu�er, there is no safety net. Finally, as lifetime
semantics of components that implementers rely on
are not well speci�ed, it is extremely di�cult to rea-
son about data lifetime in a whole system.

You can't say what you mean. Most program-
ming languages and operating systems don't pro-
vide complete or portable mechanisms for express-
ing basic semantics needed to limit data lifetime,
e.g. \don't write this to disk in plaintext form" or
\clear this from memory."

To express the former, at best programs can rely
on functions that \lock" a range of pages in mem-
ory. Unfortunately, these function were designed to
provide predictable performance for real-time appli-
cations, not for security [10]. As a result they don't
provide the semantics that are required and that
most programmers expect.

Unix-like operating systems provide the mlock

call. mlock de�nes \lock" to mean \will always be
in memory" and does not prevent pages from being



written to disk, although it may be implemented
that way [10]. The Windows VirtualLock func-
tion has a similar problem: \locked" pages can be
evicted as long as they are read back in before the
program regains the CPU. Windows' AWE API also
obtains locked memory, but imposes numerous re-
strictions [9, 8, 14].

Clearing all memory into which sensitive data
propagate is essentially impossible in modern high
level languages (e.g. Java, Perl, etc.). In C, where it
is possible, it is fraught with pitfalls. The most com-
mon and recommended practice for clearing mem-
ory is to use memset or bzero to overwrite sensitive
data. Unfortunately, optimizing compilers can re-
move this code by detecting that a local variable's
value is not used after it is cleared [7, 5]. Manu-
ally clearing memory is also error prone, especially
in light of abnormal change of control 
ow, such as
longjmp, signals, and program crashes.

4 Reducing Data Lifetime

There is no silver bullet for solving data lifetime
problems. However, a variety of techniques can sig-
ni�cantly improve the data lifetime properties of
software systems.

Make data clearing automatic. As previously
noted in section 3 manually identifying and clearing
sensitive data can be complicated and error prone.
Ideally, it should instead be done automatically.
One simple way to do this is by leveraging allocators
e.g. garbage collectors, the C free function, and
C++ destructors to recognize memory no longer in
use that should be cleared. Of course this is not
optimal in all situations. For example, garbage col-
lectors that are only invoked at a high water mark
rarely deallocate objects if a program does little allo-
cation, clearly undesirable for zeroing sensitive data.

Provide policy trade-o�s. Mechanisms for lim-
iting data lifetime like encryption, zeroing, or pin-
ning often involve costly overheads. The perfor-
mance trade-o� a�orded by providing only a sin-
gle policy can make the di�erence between an ap-
plication using a data lifetime reducing mechanism
and ignoring it. Given this, it is important to sup-
port a range of policies that a�ord di�erent life-
time/performance trade-o�s.

For example, zeroing large regions of memory
such as an entire process address space can add sig-
ni�cant overhead and pollute the cache (without use
of a \store uncached" machine instruction, such as
MOVNTI on x86). Thus, zeroing memory immedi-
ately is not always an option. An alternative is to

schedule zeroing. For example, Windows 2000 ze-
roes unused pages during idle time [14], and a com-
mon Unix practice is to zero memory immediately
before reuse. Unfortunately, both these approaches
make it di�cult to reason about when memory will
be cleared as they depend on workload. A more de-
sirable clearing schedule from a data lifetime stand-
point could provide explicit guarantees about when
data would be cleared, and allow certain storage to
be prioritized for clearing.

Storing data in encrypted form o�ers another way
to trade performance against data lifetime. This in-
creases the overhead of accessing data, but clearing
data is fast because one merely has to discard the
key. This is especially valuable when there is a very
large sensitive data set, or when clearing is perfor-
mance intensive e.g. securely clearing disk data can
require multiple write passes [4]. When data is on
persistent storage this provides the additional ben-
e�t that system crashes fail safe as the key is auto-
matically discarded.

Design for data lifetime. Program design can
signi�cantly in
uence data lifetime. For exam-
ple, a program that caches a server password
(e.g. ssh-agent, web browsers) can be redesigned
to prompt for it each time, reducing data duration
at a cost in usability. However, if care is not taken
to clear the password when it is not in use, the ex-
tra copies produced by re-entering passwords could
o�set the reduction in duration.

Identify sensitive data explicitly. Today's
OSes, libraries, language runtimes, etc. do not al-
low sensitive data to be explicitly identi�ed. Thus,
components that care about data lifetime must treat
all data as sensitive. While desirable from a se-
curity standpoint, this may impose unacceptable
performance overheads. By identifying data at a
more granular level e.g. individual pages or vari-
ables vs. whole programs, we can reduce this cost.
Providing the system with this information can also
shift the burden of clearing memory, etc. from the
programmer to the infrastructure.

Paradoxically, while identifying sensitive data ex-
plicitly permits more secure handling, it also allows
attackers to identify sensitive data. An attacker
may therefore be able to easily �lter sensitive data
from other data, a task which is more di�cult today.

Provide secure defaults. Changes that improve
data lifetime greatly but impose minimal overhead
should be defaults. For example, in the course of
examining data lifetime in Mozilla we found that
immediately zeroing data in the string class destruc-



tor signi�cantly reduced the lifetime of passwords
entered into web forms, with negligible overhead.
Treating all data as sensitive seems the best default
for features that write to persistent storage such as
check-pointing/migration, swapping, etc., while us-
ing �ner grained hints about sensitivity as optimiza-
tions.

Measure it! Our experience with Mozilla re-
vealed that even small changes can have a big im-
pact on data lifetime. However, analyzing data life-
time in large systems can be a daunting, error-prone
task. A variety of existing tools could help address
this problem. Memory pro�lers could identify long
lived dynamically allocated data and memory leaks,
which can point to lifetime problems. Static analy-
sis tools such as meta-compilation and type quali�er
inference \tainting" analysis could identify variables
containing sensitive data [1, 13]. They could also
check for errors in implementing memory clearing,
e.g. identifying code paths that fail to clear a bu�er.

5 Related Work

Past work on system level solutions to data life-
time problems, such as encrypted swap [11] or secure
core dump mechanisms [1], just considered piece-
meal solutions to speci�c threats. Texts on secure
design/implementation have treated data lifetime
issues only as a class of application bug, such as
failing to zero crypto keys or lock memory contain-
ing passwords.

We believe these views of data lifetime are woe-
fully incomplete. First, although addressing indi-
vidual threats is important, it fails to prevent future
threats either caused or exacerbated by extended
data lifetime. Second, data lifetime problems are
qualitatively di�erent from bugs.

Bugs are generally local errors in software, of-
ten artifacts of a language or API, but data life-
time is a quanti�able property of systems at every
level of system design and implementation, from de-
vice drivers to language runtimes. Unlike particu-
lar bugs, data lifetime cannot be simply eliminated,
only reduced, sometimes at the cost of making other
design trade-o�s. Finally, �xing bugs typically only
�xes known exploits, whereas reducing data lifetime
can make software more robust against unknown
threats.

6 Conclusion

In today's systems compromises are inevitable.
Limiting data lifetime reduces the risk of sensitive
data exposure when compromises occur. Previously,
data lifetime problems have been largely overlooked,

left as a problem for application implementers. We
have argued that data lifetime is a whole system
problem that must be addressed at many levels,
from the tool chain to the operating system. We
have characterized the data lifetime problem and ex-
amined how current operating systems, languages,
etc. provide inadequate support for reducing data
lifetime. We have explored solutions for reducing
data lifetime in a simple, e�cient, and 
exible man-
ner.

7 Acknowledgments

This work was supported in part by the National
Science Foundation under Grant No. 0121481 and a
Stanford Graduate Fellowship.

References

[1] P. Broadwell, M. Harren, and N. Sastry. Scrash: A sys-
tem for generating secure crash information. In Proceed-
ings of the 11th USENIX Security Symposium, August
2003.

[2] J. Chow, B. Pfa�, T. Gar�nkel, K. Christopher, and
M. Rosenblum. Understanding data lifetime via whole
system simulation. In Proceedings of the 12th USENIX

Security Symposium, 2004.

[3] S. L. Gar�nkel and A. Shelat. Remembrance of data
passed: A study of disk sanitization practices. 1(1):17{
27, Jan./Feb. 2003.

[4] P. Gutmann. Secure deletion of data from magnetic and
solid-state memory. In Proceedings of the 6th USENIX

Security Symposium, July 1996.

[5] P. Gutmann. Software leaves encryption keys, passwords
lying around in memory. http://www.securityfocus.

com/archive/82/297827/2002-10-27/2002-11-02/2,
October 2002.

[6] T. Hamilton. `Error' sends bank �les to eBay. Toronto
Star, Sep. 15, 2003.

[7] M. Howard. Some bad news and some good news. http:
//msdn.microsoft.com/library/default.asp?url=

/library/en-us/dncode%/html/secure10102002.asp,
October 2002.

[8] Microsoft Corporation. Address windowing extensions
API. http://msdn.microsoft.com, February 2000.

[9] Microsoft Corporation. VirtualLock. http://msdn.

microsoft.com, January 2004.

[10] Open Group. The single UNIX speci�cation version 3,
IEEE standard 1003.1-2001. WWW, 2001. http://www.
unix-systems.org/single_unix_specification/.

[11] N. Provos. Encrypting virtual memory. In Proceedings

of the 10th USENIX Security Symposium, pages 35{44,
August 2000.

[12] R. Rogers. Exploiting the ftp pasv vulnerabil-
ity. http://www.securityhorizon.com/whitepapers/

hacking/PASV.html, October 1999.

[13] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner.
Detecting format string vulnerabilities with type quali-
�ers. In Proc. 10th USENIX Security Symposium, Au-
gust 2001.



[14] D. A. Solomon and M. Russinovich. Inside Microsoft

Windows 2000. Microsoft Press, 2000.

[15] US Department of Energy Computer Incident Advisory
Capability. O�ce XP Error Reporting May Send Sen-
sitive Documents to Microsoft. http://www.ciac.org/

ciac/bulletins/m-005.shtml.


