
Full-Stack SDN
Debnil Sur

VMware
Ben Pfaff

VMware Research

Leonid Ryzhyk
VMware Research

Mihai Budiu
VMware Research

ABSTRACT
The conventional approach for building software-defined net-
work systems requires separately developing the management,
control, and data planes. Manually written code connects the
management plane’s configuration to the control plane, and
the control plane generates the data planes’ configurations
as small program fragments that scatter across the codebase.
Scalability and correctness become increasingly challenging
as such a system develops and grows.

In contrast, in our approach, called Nerpa, all three planes
are programmed in a unified way. In Nerpa a transactional
database stores management plane state. The control plane
is implemented in a specialized query language which au-
tomatically executes in an incremental fashion, improving
scalability. Finally, the data plane is programmed in P4. To
aid correctness, all three parts are type-checked together, and
tools generate code for data movement between planes.

We have published a prototype implementation using an
open-source license. We believe that full-stack SDN can build
more robust and maintainable networked systems.

CCS CONCEPTS
• Networks → Programmable networks;

KEYWORDS
Software-defined networking, network programming, enter-
prise networks

ACM Reference Format:
Debnil Sur, Ben Pfaff, Leonid Ryzhyk, and Mihai Budiu. 2022. Full-
Stack SDN. In The 21st ACM Workshop on Hot Topics in Networks
(HotNets ’22), November 14–15, 2022, Austin, TX, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3563766.3564101

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets ’22, November 14–15, 2022, Austin, TX, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to
the Association for Computing Machinery.
ACM ISBN 978-1-4503-9899-2/22/11. . . $15.00
https://doi.org/10.1145/3563766.3564101

1 INTRODUCTION
Recent advances allow significant programmatic control over
network operations: software-defined networking (SDN) has
broadly enabled the management of network devices [12, 18,
31, 32]. High-speed, programmable data planes let develop-
ers define complete and arbitrary processing of individual
packet metadata [3, 9]. But despite these advances, it remains
difficult and error-prone to program the entire network.

Figure 1: Management, control, and data planes for a
dimmable light bulb.

The network software architecture is typically divided into
three parts: the management, control, and data planes, illus-
trated by analogy in Fig. 1 for a dimmable light bulb. The
management plane handles network policies, such as mainte-
nance and monitoring [17], and provides APIs for administra-
tion. The control plane decides how packets are forwarded,
transformed, or dropped. The data plane carries user traffic.

Figure 2: Architecture of today’s software-defined net-
works.

130

https://doi.org/10.1145/3563766.3564101
https://doi.org/10.1145/3563766.3564101
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3563766.3564101&domain=pdf&date_stamp=2022-11-14

HotNets ’22, November 14–15, 2022, Austin, TX, USA Debnil Sur, Ben Pfaff, Leonid Ryzhyk, and Mihai Budiu

Figure 3: The growth of OVN’s controller codebase and
the number of OpenFlow fragments over time.

As shown in Fig. 2, the management plane is often imple-
mented as an API backed by a reliable database [17], and
the control plane as an SDN controller written in an imper-
ative language such as Java or C++ [31, 38, 54]. The data
plane is built using flow-programmable switch software or
hardware [8, 23, 46]. Different teams implement each plane
separately with different technologies. This process creates
correctness and scalability challenges.

Within this paradigm, adding new network features that
span all three planes requires a significant cross-team co-
design, development, and testing effort. Complexity stems
from orchestration required across planes and interactions
between features within a plane. For example, in OpenFlow
systems, the SDN controller acts as a specialized compiler
that converts high-level policies into data plane program frag-
ments: OpenFlow flows. The control plane installs fragments
in network devices (e.g., switches). At any given time, a
switch executes an OpenFlow program constructed from all
currently installed fragments. Additional network features
require new flow rule fragments for tables and associated pri-
orities. These become scattered over the controller’s quickly
growing code base. The controller must handle various edge
cases when translating policies into these fragments, and
ensure that any possible combination of runtime policies gen-
erates a legal OpenFlow program for the targets.

The Open Virtual Network (OVN), a commercially de-
ployed system for virtual network management [45], illus-
trates this trend. OVN manages a complex distributed system
including an OVSDB database system [16] and multiple Open
vSwitch data planes [48]. It provides L2/L3 virtual network-
ing in support of many network features: logical switches and
routers, security groups, L2/L3/L4 ACLs, tunnel overlays, and
logical-physical gateways. Fig. 3 shows that over time, the
controller’s code base and the number of OpenFlow program
fragments scattered throughout it have grown at a similar rate.
This sprawl hurts maintenance and network correctness.

Moreover, today’s control plane implementations can scale
poorly. Traditional imperative programming languages used

in controllers do not support incrementality. We contend this
is essential for performance at scale. Network state changes
dynamically due to many classes of events: policy updates,
changes in load, maintenance, link failures, etc. In response to
a change, the controller should not recompute and redistribute
the entire network state. Instead, it should perform an incre-
mental amount of work – proportional to (ideally linear in)
the size of modified state, not of the entire network state [31].
Else, it will struggle with data center-sized deployments [31].

Unfortunately, imperative languages like Java or C++ of-
fer zero support for writing incremental controllers. Writing
incremental programs by hand requires a verbose and con-
fusing coding style (reacting to concurrent events), or ad-hoc
approaches for incremental computation [40, 61]. Consider
labeling reachable nodes in a graph, a standard problem for
computing forwarding tables. A full computation can be done
in tens of lines of Java. But an incremental Java implementa-
tion, supporting dynamic insertions and deletions of network
links and only recomputing changed labels, is much harder.
Such an implementation in our organization’s networking vir-
tualization platform required several thousand lines of code.
Despite developer and QA efforts, it required multiple re-
leases to debug. A controller consists of many algorithms that
benefit from incremental implementation.

A general-purpose programming language supporting in-
cremental computation remains elusive. However, in the con-
text of relational databases, the related concept of incremental
view maintenance (IVM) is well understood [19]. Material-
ized views are defined by queries as a function of other data-
base tables and views. On changes to the tables and source
views, IVM computes and applies only incremental changes
to the dependent views, rather than recomputing their full con-
tents. Novel programming languages that compute over rela-
tions and collections offer automatic incremental view main-
tenance. They can be used to incrementalize queries for a rich
class of programs, including recursive queries [11, 43, 53].
For example, in Differential Datalog, or DDlog for short, the
programmer writes a specification for a non-incremental pro-
gram using a rich dialect of Datalog. The DDlog compiler
then generates an efficient incremental implementation. This
only processes input changes or events, and it produces only
output changes instead of entire new versions of the outputs.

Consider the following DDlog implementation of the net-
work labeling problem described above. GivenLabel and
Edge are input relations, and Label is the output view:

Labe l (n1 , l a b e l) : − GivenLabe l (n1 , l a b e l) .
Labe l (n2 , l a b e l) : − Labe l (n1 , l a b e l) ,

Edge (n1 , n2) .

This program maintains Label for any insertions or dele-
tions in Edges or modifications of GivenLabel. DDlog
automatically generates an incremental version. It provides
scalability but is far shorter than the equivalent incremental

131

Full-Stack SDN HotNets ’22, November 14–15, 2022, Austin, TX, USA

implementation in Java or C++. A slightly refined version is
used in a production network controller with customers.

We propose a unified environment for full-stack SDN pro-
gramming. Our vision, called Nerpa, combines relational and
procedural abstractions to realize SDN’s high-level approach
and programmable data planes’ fine-grained control. This
includes two important insights:

(1) An automatically incremental control plane improves
scalability. The network developer should not write and opti-
mize an incremental controller by hand. Instead, control plane
programs should be written in a modern programming lan-
guage, designed for computing over collections and compiled
to be incremental. Database queries then represent network
features: forwarding rules are views defined from high-level
policies and network state. The compiler turns these queries
into incremental programs. These compute changes to for-
warding rules from changes in policies and state. The written
code is simple, declarative, and no longer responsible for
handling multiple concurrent state changes.

(2) Co-designing the management, control and data planes
helps overall correctness. Many data structures for the control
plane program can be generated from corresponding struc-
tures in the data and management planes. Tooling can then
automate and simplify data conversion when moving data be-
tween the planes. This saves developer time spent writing glue
code and interfaces between different software components.

We have implemented a prototype of this programming
framework. It uses an OVSDB management plane [16], P4
data plane [9], and DDlog control plane [53]. The prototype is
available as an open-source project with an MIT license [2].

The rest of the paper is organized as follows: we identify
specific challenges in programming the entire network in §2;
we present the Nerpa vision in §3 and our prototype imple-
mentation in §4. We discuss related work in §5 and conclude
in §6 with the potential implications of full-stack SDN.

2 BACKGROUND AND MOTIVATION
2.1 Control plane scalability
Many types of scalability challenges emerge in deployed net-
works. We focus on those that stem from changes in network
state and could benefit from an incremental control plane.

Small, frequent configuration changes happen in network
deployments. Their rapid occurrence at high scale can ham-
per performance. Recomputing the state of an entire network
on each change requires significant CPU resources across
compute nodes and creates high control plane latency [61].
Consider Robotron, Meta’s top-down system for managing
a massive production network [56]. Configurations are gen-
erated from FBNet, an underlying object store that models
network components. Each day on average, more than 50
lines change across models for many reasons: new network
components, changed attributes, logic changes, and more. In

particular, backbone devices average a dozen changes per
week, with over 150 lines updated per change [56]. These
require continuous re-configurations and are updated incre-
mentally. Simultaneously, the global disparity between the
resource consumption of big and small jobs has only grown:
the largest 1% of jobs represent over 99% of both compute
and memory utilization [57]. A poorly-timed configuration
issue could delay jobs or cause a critical workload to fail.

An incremental control plane can help address these chal-
lenges. It only computes the data plane changes that corre-
spond to configuration changes or events. The operator must
specify how input changes translate to output changes. This
avoids recomputing the entire network, reduces planning for
undesirable side effects, and helps debug those that occur.

2.2 Incremental programming
Unfortunately, incremental programs are difficult to write.
SDN controllers are typically written in a traditional impera-
tive language, like Java or C++. Making these incremental can
increase the amount of code by an order of magnitude [52]. It
is hard to detect and fix new bugs, particularly at scale.

A networking-specific challenge stems from control plane
computations that require recursion or iteration, such as graph
reachability for routing tables. The SDN controller receives
periodic updates from routers. It applies each update to the
network topology graphs and computes a form of all-pairs
shortest-path (with constraints imposed by routing policies).
This iteration cannot be expressed by standard database queries.
But it can be implemented using recursive queries, that com-
pute routing updates until no more changes are produced.
Traditional database techniques for incremental view mainte-
nance do not support such queries, but DDlog does.

Incrementally programmed networked systems reflect these
difficulties. Consider ovn-controller, OVN’s local con-
troller daemon written in C. The past half-decade has seen
multiple efforts to make the code incremental. The first con-
sisted of 21 patches [41]. Due to issues with reliability and
verifying correctness, the changes were reverted [40]. An al-
ternative implementation provided by eBay followed a more
disciplined approach with an engine based on C callbacks.
This reduced latency by 3× and CPU cost by 20× in produc-
tion. It was eventually merged upstream after much back-and-
forth, and several bugs were later found in production. Many
limitations and difficulties remain. The developer must ex-
plicitly identify incremental changes. The code’s complexity
makes it difficult to understand, to update, or to confirm an
update’s success [61]. It is also difficult to test, since many
code paths are only exercised when a deployment takes a
particular series of steps to arrive at a given configuration.

While any program can be made incremental, some may
not see performance benefits. Developers must consider their
applications’ usage patterns. For example, OVN’s load bal-
ancer benchmark cold starts ovn-controller with large

132

HotNets ’22, November 14–15, 2022, Austin, TX, USA Debnil Sur, Ben Pfaff, Leonid Ryzhyk, and Mihai Budiu

load balancers and then deletes each. This is a worst-case for
incremental computation: changes occur multiple times and
cannot be easily parallelized, but automatically incremental-
izing the code still requires memory-intensive data indexing.
On this benchmark, a DDlog controller took 2× the CPU time
and 5× the RAM as the C implementation [47].

2.3 Programmable data planes
The rise of data plane programmability raises additional issues
but introduces a mechanism to address the above control plane
challenges. Network devices now expose low-level packet
processing logic to the control plane through a standardized
API. This can be leveraged when writing the control plane.

Data plane languages are seeing strong industry adoption.
Mainstream chip vendors are commercializing programmable
switching ASICs (application-specific integrated circuits).
Broadcom’s Trident-4 and Jericho-2 are programmable using
NPL [26], while Intel/Barefoot’s Tofino [3] and Cisco’s Sili-
con One [15] support P4 [9]. In particular, P4 supports many
targets, from ASICs to software switches [39].

The execution of programmable data planes is driven by
policies created by the control plane. These policies are en-
coded into table entries written by the control plane and read
by the data plane. These table entries generalize traditional
forwarding table entries and can encode a rich set of policies
(e.g., forwarding, load-balancing, firewall rules, encapsulation
and decapsulation, etc.). A data plane table can be conceptu-
alized as a database view for the global control plane state
relevant to the controlled device. For example, a switch’s for-
warding table entries are the entries from the global controller
routing table describing the links connected to the switch.
This transforms programming data plane policies into a tra-
ditional incremental view maintenance program [19]—the
exact problem solved by an incremental control plane.

In summary, an incremental approach could improve con-
trol plane scalability. But the difficulties of traditional incre-
mental programming have hindered deployment. Programmable
data planes motivate a possible solution.

3 NERPA
We envision a unified environment for programming the en-
tire network. This should provide network operators with
correctness and scalability guarantees. Relational database
abstractions model management plane entities and data plane
tables. A fully and automatically incremental control plane
program sits between them. These relations are used in rules
that define how data plane table entries are computed from
management plane policies. The network developer writes a
fully type-checked program that spans the entire network.

The Nerpa programming framework coordinates three pieces
of software, one per network plane:

Figure 4: The vision for Nerpa, using the tools in our proto-
type implementation. The network programmer provides
the OVSDB schema, DDlog program, and P4 program.

Management plane: The system administrator configures
the management plane by populating and modifying the con-
tents of a database instance. The database schema represents
the network’s structure and policies. Tables represent net-
work links, network devices (e.g., switches, interfaces, virtual
machines), high-level administrative structures (e.g., adminis-
trative domains), security policies, and more.

Control plane: The control plane is driven by two differ-
ent kinds of input relations: (1) relations representing the cur-
rent network configuration, obtained from the management
database and (2) relations representing notifications from data
plane packets and events. The control plane computes output
relations, which correspond to tables in the managed data
planes. An incremental control plane only computes changes
to output relations given changes to input relations.

Data plane: The Nerpa controller, in charge of state syn-
chronization, installs the data from the controller output rela-
tions as entries in the programmable data plane tables.

Nerpa generates the code that interfaces between planes.
This automates tasks that previously required writing glue
code. The (DDlog) schema of the relations for the control
plane is generated from the schemas of the management plane
and the data plane program tables. The Nerpa controller reads
changes from the management plane and transforms them
to inputs to the control plane program. When the controller
receives a message from the data plane, it transforms the
message into a row insertion into an input relation. This input
relation’s contents can also influence the controller’s behavior,
forming a feedback loop. In the compilation process, Nerpa
typechecks the data definitions and database schema, ensuring
that only well-formed messages are exchanged.

4 IMPLEMENTATION
Our current prototype implementation is shown in Fig. 4.

133

Full-Stack SDN HotNets ’22, November 14–15, 2022, Austin, TX, USA

4.1 Prototype Technologies
We use the Open vSwitch Database (OVSDB) [48] for the
management plane. OVSDB is well-suited for state synchro-
nization, because it can stream a database’s ongoing series
of changes, grouped into transactions, to a subscriber that
registered for these events.

We use DDlog to implement a centralized control plane.
Note that each data plane does also have a synthesized local
control plane, which programs tables on the local devices
and relays events to the centralized control-plane using the
P4Runtime API. DDlog has several key properties that im-
prove on past incremental and relational languages.

Streaming APIs for performance: At runtime a DDlog
program accepts a stream of updates (i.e. from OVSDB) to
input relations – inserts, deletes, or modifications. It produces
a corresponding stream of updates to the computed output
relations. DDlog changes are also grouped into transactions.
These maintain important policy invariants and are much
easier to reason about than events or database triggers.

Types for correctness: Pure Datalog lacks concepts like
types, arithmetic, strings, or functions. DDlog’s powerful
type system includes Booleans, integers and floats, and data
structures like structures, unions, vectors, and maps. These
can be stored in relations and manipulated by rules (queries).
DDlog can perform many operations directly over structured
data, including the full relational algebra. Rules can include
negation (like SQL “EXCEPT”), recursion, and grouping.

Procedural language for expressivity: DDlog has a pow-
erful procedural language that can express many deterministic
computations, used in more complex network features, e.g.,
string processing, regular expressions, iteration, etc.

We use P4 to program the data plane. P4 has emerged as the
generally preferred language for data plane programming with
a robust and growing ecosystem. In particular, the P4Runtime
API specifies how the control plane can control the elements
of a P4-defined data plane. Our current prototype assumes a
single P4 program for all network devices. But our solution
can generally support multiple classes of devices (e.g., spine,
leaf switches), each running a different P4 program. The
management plane relations should reflect these classes.

In Nerpa the glue code, such as the SDN controller and state
synchronization pieces, are written in Rust. Rust’s low-level
control and memory safety fit Nerpa’s goals well. Rust can
also be easily linked against existing Java or C++ programs.
DDlog programs are also compiled to Rust by the DDlog
compiler. The Rust libraries for interfacing with OVSDB
and P4Runtime are in our repository [2]. This also includes
p4c-of, which compiles P4 into OpenFlow and allows the
use of high-performance software switches [49].

Nerpa helps developers use these technologies more eas-
ily and with correctness guarantees. Generating the APIs
between layers reduces verbose, error-prone interoperability

work when using the technologies individually. While a learn-
ing curve does still exist, particularly for the control plane’s
Datalog syntax, ongoing work provides a direct Rust-based
query interface to the same powerful abstractions [1, 11].

4.2 Control and Data Plane Co-Design
Data exchange between the different planes requires an in-
termediate data representation. The control plane reads in-
put changes from the management plane and writes output
changes to the data plane. The data plane can also send
notifications to the control plane, as in MAC learning. In
Nerpa, changes from the management plane are represented
by changes in OVSDB state. Communication between the
control plane and data plane uses the P4Runtime API. Packet
digests send notifications to the control plane, and output
changes can modify entries in the match-action tables.

Since all communication flows through the control plane,
DDlog relations serve as the natural intermediate data repre-
sentation. Nerpa’s tooling generates an input relation for the
controller for each table in the OVSDB management plane;
it also generates a controller input relation for each packet
digest in the P4 program. An output relation for the controller
is generated for each match-action table in the P4 program. Fi-
nally, generated helper functions in Rust convert data between
P4Runtime and DDlog types. This enables close integration
and co-design of the control plane and data plane.

As a brief example, the code snippets in Figure 5 present
a simplified version of VLAN assignment. The declaration
of the output relation InVlan is generated from a P4 match-
action table, as seen in Fig. 5(a). The input relation Port is
generated from an OVSDB table shown in Fig. 5(b). A pro-
grammer can write a Datalog rule as in Fig. 5(c) to compute
the contents of the output relation from the input relation.

4.3 Example: Simple Network Virtual Switch
The Nerpa repository includes snvs, a simple network vir-
tual switch. This implements key networking features, includ-
ing VLANs, MAC learning, and port mirroring. The Nerpa
integration test executes the full network stack, using OVSDB,
the DDlog runtime, and the P4 behavioral simulator BMv2.

As a preliminary scalability evaluation, we added 2,000
ports to the system. We then measured the time between (1)
the OVSDB client reading a new port from OVSDB and (2)
the data plane entry being added to the P4 table. The first time
difference noted was 0.013 seconds, and the last was 0.018
seconds. This scaling demonstrates incrementality at work.

While imperfect, lines of code (LOC) help quantify the
maintenance challenges for developers discussed in §1. snvs
consists of 350 LOC of DDlog (250 of rules, 100 of gener-
ated relations); 300 of P4; 5 OVSDB tables with 2–5 fields
each; and 50 of generated Rust glue code. 700 total LOC
is at least an order of magnitude less than an incremental
implementation of similar features in Java or C [52].

134

HotNets ’22, November 14–15, 2022, Austin, TX, USA Debnil Sur, Ben Pfaff, Leonid Ryzhyk, and Mihai Budiu

(a) A P4 match-action table and the generated DDlog output
relation of the controller. The P4 tables produce output control-
plane relations because the P4 program is the controlled entity.

(b) An OVSDB schema fragment of the management plane
and the generated DDlog input relation for the control plane.
Management-plane relations produce input control relations.

(c) A hand-written DDlog rule executed by the control plane,
computing the output relation from the input relations.

Figure 5: Nerpa examples. Within each subfigure, color is
used to mark corresponding parts of input and output.

5 RELATED WORK
In this section, we discuss existing attempts to make pro-
grammable network systems more scalable and correct.

Control plane scalability. Past work has used either rela-
tional, database-style abstractions or incremental computation.

The few that incorporated both were limited by their chosen
tools. None leveraged the data plane.

Various database abstractions and principles have been
used to model networks. Many commercial systems use data-
bases to represent network state [6, 8, 10, 24, 42, 55, 56, 58].
Modeling networks as various database is an old idea, in-
cluding SNMP [20]. These range from SQL dialects [50]
to Prolog-based monitoring [51, 59]. Declarative network-
ing [33, 34], the most relevant of this work, explored dis-
tributed Datalog-based languages for programming networks
and distributed systems. It primarily implemented distributed
routing protocols in declarative languages. This inspired a
family of Datalog-based languages targeting networks [7, 13,
14, 21, 27, 28, 37]. But none used incremental computation
and programmed both the control and data planes.

Two especially relevant languages are Flowlog [44] and
Nlog [31]. Flowlog programs both the control and data planes.
It models everything, including events and packets, as tables.
But it does not support recursion, iteration, or joins, and is
not incremental. Both incremental and relational, Nlog is
most similar to DDlog and has been used in industrial-scale
network virtualization. When system state changes, an Nlog
program decides a new virtual forwarding policy. But it shares
Flowlog’s limits: it does not support recursion or negation,
lacks a type system, and requires external C++ functions
for many operations. It does not leverage the data plane for
correctness or scalability. It cannot modify controller state.

Networking-specific languages. Advances generally focus
on a network subsystem, particularly the data plane. The most
relevant work verifies the data plane program at network
devices. Early tools analyzed a snapshot of the complete data
plane [4, 5, 29, 35, 36]. Newer solutions [22, 25, 28, 30, 60]
use incrementality in production. But none apply the data
plane to control plane design. We extend past work to improve
other parts of the network.

6 CONCLUSIONS
We combine several technologies: SDN, for higher-level con-
trol over network policy; programmable data planes, to define
packet processing; and compilers for incremental program-
ming languages, to make traditional algorithms incremental.

These tools help rethink network programming across the
entire stack. We believe that this can improve both correctness
and scalability. Interfaces can be generated from the manage-
ment and data planes. Programs can be type-checked across
all layers. This increases developers’ confidence in system
correctness and, in turn, their feature velocity. An incremental
control plane helps scale the system.

We plan to validate our vision through bottom-up imple-
mentations of increasingly complex network programs. Be-
yond our first steps in network virtualization, many other
applications exist: radio networks, edge computing, cloud
monitoring and control, and more.

135

Full-Stack SDN HotNets ’22, November 14–15, 2022, Austin, TX, USA

REFERENCES
[1] Database stream processor. https://github.com/vmware/database-

stream-processor. Retrieved September 2022.
[2] Nerpa: Network programming with relational and procedural abstrac-

tions. https://github.com/vmware/nerpa. Retrieved October 2022.
[3] Barefoot Tofino. https://www.intel.com/content/www/us/en/products/

network-io/programmable-ethernet-switch/tofino-series/tofino.html,
2020.

[4] E. Al-Shaer and S. Al-Haj. FlowChecker: Configuration analysis and
verification of federated OpenFlow infrastructures. In Proceedings of
the 3rd ACM workshop on Assurable and usable security configuration,
pages 37–44, 2010.

[5] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker. NetKAT: Semantic foundations for
networks. ACM SIGPLAN Notices, 49(1):113–126, 2014.

[6] Arista. EOS: The next generation extensible operating system.
https://www.arista.com/assets/data/pdf/EOSWhitepaper.pdf, 2016.

[7] H. Ballani and P. Francis. CONMan: A step towards network manage-
ability. In SIGCOMM, August 2007.

[8] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar.
ONOS: Towards an open, distributed SDN OS. In Workshop on Hot
Topics in Software Defined Networking (HotSDN), page 1–6, 2014.

[9] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker.
P4: Programming protocol-independent packet processors. SIGCOMM
Computer Communication Review (CCR), 44(3):87–95, July 2014.

[10] Broadcom Corporation. Broadcom SDKLT. https://github.com/
Broadcom-Network-Switching-Software/SDKLT, October 2017. Re-
trieved January 2021.

[11] M. Budiu, F. McSherry, L. Ryzhyk, and V. Tannen. DBSP: Automatic
incremental view maintenance for rich query languages, March 2022.

[12] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker. Ethane: Taking control of the enterprise. In SIGCOMM,
page 1–12, 2007.

[13] X. Chen, Y. Mao, Z. M. Mao, and J. Van der Merwe. Declarative
configuration management for complex and dynamic networks. In
Conference on emerging Networking EXperiments and Technologies
(Co-NEXT), 2010.

[14] X. Chen, Y. Mao, Z. M. Mao, and J. Van der Merwe. DECOR: DEClar-
ative network management and OpeRation. SIGCOMM Computer
Communication Review (CCR), 40(1):61–66, Jan. 2010.

[15] R. Chopra. ONE silicon, ONE experience, MULTIPLE roles. https:
//blogs.cisco.com/sp/one-silicon-one-experience-multiple-roles, De-
cember 2019.

[16] B. Davie, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. Gude, A. Pad-
manabhan, T. Petty, K. Duda, and A. Chanda. A database approach
to SDN control plane design. SIGCOMM Computer Communication
Review (CCR), 47(1):15–26, Jan. 2017.

[17] A. Gember-Jacobson, W. Wu, X. Li, A. Akella, and R. Mahajan. Man-
agement plane analytics. In ACM Internet Measurement Conference,
2015.

[18] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker. NOX: Towards an operating system for networks.
SIGCOMM Computer Communication Review (CCR), 38(3):105–110,
July 2008.

[19] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views
incrementally. In Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’93, page 157–166,
Washington, D.C., USA, 1993.

[20] D. Harrington, R. Preshun, and B. Wijnen. RFC 3411: An architecture
for describing simple network management protocol (SNMP) manage-
ment frameworks. https://tools.ietf.org/html/rfc3411, December 2002.

IETF.
[21] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker.

Practical declarative network management. In Workshop on Research
on Enterprise Networking (WREN), pages 1–10, 2009.

[22] A. Horn, A. Kheradmand, and M. Prasad. Delta-Net: Real-time network
verification using atoms. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pages 735–749, 2017.

[23] V. Inc. VMware NSX network virtualization and security platform.
https://www.vmware.com/products/nsx.html. Retrieved 2021.

[24] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat. B4: Experience with a globally-deployed software
defined WAN. In SIGCOMM, pages 3–14, 2013.

[25] K. Jayaraman, N. Bjørner, J. Padhye, A. Agrawal, A. Bhargava, P.-A. C.
Bissonnette, S. Foster, A. Helwer, M. Kasten, I. Lee, et al. Validating
datacenters at scale. In Proceedings of the ACM Special Interest Group
on Data Communication, pages 200–213. 2019.

[26] M. Kalkunte. Broadcom’s new Trident 4 and Jericho 2 switch de-
vices offer programmability at scale. https://www.broadcom.com/blog/
trident4-and-jericho2-offer-programmability-at-scale, June 2019.

[27] N. P. Katta, J. Rexford, and D. Walker. Logic programming for software-
defined networks. In Workshop on Cross-Model Design and Validation
(XLDI), 2012.

[28] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte. Real time network policy checking using header space
analysis. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 99–111, Lombard, IL, Apr. 2013.

[29] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis:
Static checking for networks. In 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12), pages 113–126, 2012.

[30] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. VeriFlow:
Verifying network-wide invariants in real time. In USENIX Symposium
on Networked Systems Design and Implementation (NSDI), pages 15–
27, 2013.

[31] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, P. Ingram, E. Jackson, A. Lambeth, R. Lenglet, S.-
H. Li, A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan, S. Shenker,
A. Shieh, J. Stribling, P. Thakkar, D. Wendlandt, A. Yip, and R. Zhang.
Network virtualization in multi-tenant datacenters. In USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI), pages
203–216, Seattle, WA, Apr. 2014.

[32] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix:
A distributed control platform for large-scale production networks. In
Symposium on Operating System Design and Implementation (OSDI),
page 351–364, USA, 2010.

[33] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative
networking: Language, execution and optimization. In ACM SIGMOD
International conference on Management of data (SIGMOD), page
97–108, 2006.

[34] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative
networking. Communications of the ACM (CACM), 52(11):87–95, Nov.
2009.

[35] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese.
Checking beliefs in dynamic networks. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI), page 499–512,
2015.

[36] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King. Debugging the data plane with Anteater. SIGCOMM Computer
Communication Review (CCR), 41(4):290–301, 2011.

136

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://github.com/Broadcom-Network-Switching-Software/SDKLT
https://github.com/Broadcom-Network-Switching-Software/SDKLT
https://blogs.cisco.com/sp/one-silicon-one-experience-multiple-roles
https://blogs.cisco.com/sp/one-silicon-one-experience-multiple-roles
https://tools.ietf.org/html/rfc3411
https://www.vmware.com/products/nsx.html
https://www.broadcom.com/blog/trident4-and-jericho2-offer-programmability-at-scale
https://www.broadcom.com/blog/trident4-and-jericho2-offer-programmability-at-scale

HotNets ’22, November 14–15, 2022, Austin, TX, USA Debnil Sur, Ben Pfaff, Leonid Ryzhyk, and Mihai Budiu

[37] Y. Mao, B. T. Loo, Z. Ives, and J. M. Smith. MOSAIC: Unified
declarative platform for dynamic overlay composition. In Conference
on emerging Networking EXperiments and Technologies (Co-NEXT),
2008.

[38] J. Medved, R. Varga, A. Tkacik, and K. Gray. Opendaylight: Towards
a model-driven sdn controller architecture. In Proceeding of IEEE In-
ternational Symposium on a World of Wireless, Mobile and Multimedia
Networks 2014, pages 1–6, 2014.

[39] O. Michel, R. Bifulco, G. Retvari, and S. Schmid. The programmable
data plane: abstractions, architectures, algorithms, and applications.
ACM Computing Surveys (CSUR), 54(4):1–36, 2021.

[40] R. Moats. ovn-controller: Back out incremental pro-
cessing. https://github.com/openvswitch/ovs/commit/
926c34fd7c2080543bf3ee63a4830e0dc5c4af12, August 2016.

[41] R. Moats. [ovs-dev][patch v21 0/8] add incremental processing., July
2016.

[42] J. C. Mogul, D. Goricanec, M. Pool, A. Shaikh, D. Turk, B. Koley, and
X. Zhao. Experiences with modeling network topologies at multiple
levels of abstraction. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pages 403–418, Santa Clara, CA,
Feb. 2020. USENIX Association.

[43] D. G. Murray, F. McSherry, M. Isard, R. Isaacs, P. Barham, and
M. Abadi. Incremental, iterative data processing with timely dataflow.
Commun. ACM, 59(10):75–83, Sept. 2016.

[44] T. Nelson, A. D. Ferguson, M. J. G. Scheer, and S. Krishnamurthi.
Tierless programming and reasoning for software-defined networks. In
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), pages 519–531, 2014.

[45] OVN: Oven virtual network for Open vSwitch. https://github.com/
openvswitch/ovs/tree/master/ovn. Retrieved January 2021.

[46] J. Pettit, B. Pfaff, H. Zhou, and R. Moats. Practical OVN: Architecture,
deployment and scale of OpenStack networking. http://openvswitch.
org/support/slides/OVN_Austin.pdf, April 28 2016. OpenStack Sum-
mit.

[47] B. Pfaff. Scaling sdn policy distribution. In P4 Workshop, 2022.
[48] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,

J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado.
The design and implementation of Open vSwitch. In USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI), pages
117–130, Oakland, CA, May 2015.

[49] B. Pfaff, D. Sur, L. Ryzhyk, and M. Budiu. P4 in open vswitch with
ofp4. In P4 Workshop, 2022.

[50] C. M. Rogers. ANQL — an active networks query language. In Active
Networks, pages 99–110, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg.

[51] T. Roscoe, R. Mortier, P. Jardetzky, and S. Hand. InfoSpect: Using
a logic language for system health monitoring in distributed systems.
In Proceedings of the 10th Workshop on ACM SIGOPS European
Workshop, page 31–37, 2002.

[52] L. Ryzhyk. DDlog tutorial for OVN developers. 2019.
[53] L. Ryzhyk and M. Budiu. Differential Datalog. In Datalog 2.0, Philadel-

phia, PA, June 4-5 2019.
[54] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab. Sdn controllers:

A comparative study. In 2016 18th mediterranean electrotechnical
conference (MELECON), pages 1–6. IEEE, 2016.

[55] P. Sun, R. Mahajan, J. Rexford, L. Yuan, M. Zhang, and A. Arefin. A
network-state management service. In SIGCOMM, pages 563–574,
2014.

[56] Y.-W. E. Sung, X. Tie, S. H. Wong, and H. Zeng. Robotron: Top-down
network management at Facebook scale. In SIGCOMM, SIGCOMM,
page 426–439, 2016.

[57] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin, S. Hand,
M. Harchol-Balter, and J. Wilkes. Borg: The next generation. In Pro-
ceedings of the Fifteenth European Conference on Computer Systems,
pages 1–14, 2020.

[58] A. Wang, X. Mei, J. Croft, M. Caesar, and B. Godfrey. Ravel: A
database-defined network. In ACM Symposium on SDN Research
(SOSR), 2016. http://ravel-net.org/.

[59] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An information
plane for networked systems. SIGCOMM Comput. Commun. Rev.,
34(1):15–20, Jan. 2004.

[60] P. Zhang, X. Liu, H. Yang, N. Kang, Z. Gu, and H. Li. APKeep:
Realtime verification for real networks. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI), pages 241–
255, 2020.

[61] H. Zhou. OVN controller incremental processing. In Open vSwitch 2018
Fall Conference, San Jose, California, 2018. http://www.openvswitch.
org/support/ovscon2018/.

137

https://github.com/openvswitch/ovs/commit/926c34fd7c2080543bf3ee63a4830e0dc5c4af12
https://github.com/openvswitch/ovs/commit/926c34fd7c2080543bf3ee63a4830e0dc5c4af12
https://github.com/openvswitch/ovs/tree/master/ovn
https://github.com/openvswitch/ovs/tree/master/ovn
http://openvswitch.org/support/slides/OVN_Austin.pdf
http://openvswitch.org/support/slides/OVN_Austin.pdf
http://ravel-net.org/
http://www.openvswitch.org/support/ovscon2018/
http://www.openvswitch.org/support/ovscon2018/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Control plane scalability
	2.2 Incremental programming
	2.3 Programmable data planes

	3 Nerpa
	4 Implementation
	4.1 Prototype Technologies
	4.2 Control and Data Plane Co-Design
	4.3 Example: Simple Network Virtual Switch

	5 Related Work
	6 Conclusions
	References

