
P4 in Open vSwitch with OFP4

Ben Pfaff, Debnil Sur, Leonid Ryzhyk, Mihai Budiu
{bpfaff, dsur, lryzhyk, mbudiu}@vmware.com

VMware

Abstract
Software implementations of P4 available today have significant
limitations. Given that, we introduce OFP4, a prototype of an im-
plementation of P4, including P4Runtime support, that uses Open
vSwitch as its back-end. OFP4 translates P4 code plus runtime en-
tities such as table entries into OpenFlow (OF) flows, which it in-
stalls in a running Open vSwitch instance using the OpenFlow pro-
tocol. This paper describes how this translation works and provides
an overview of our proof-of-concept implementation.

1. Introduction
Despite 8 years of work on P4 [5], there are currently few high-
performance software switches available. This paper introduces
OFP4, a prototype implementation of P4 [2] that uses Open
vSwitch [14], which is a widely used OpenFlow [9, 13] switch
implementation, as its data plane. OFP4 is a daemon with a
P4Runtime [11] front-end for the use of an SDN controller and
an OpenFlow back-end to implement switching via Open vSwitch.

OFP4 was motivated by the limitations of the software imple-
mentations of P4 available today. The best known, BMv2 [4], is
meant for accurate simulation, not high speed packet processing.
We found ourselves unable to build and install the T4P4S [19]
academic implementation on any system other than the exact dis-
tribution of Ubuntu used by the developers. The PISCES [17] aca-
demic project is unmaintained and lacks P4Runtime support. The
P4 switch sample application that accompanies DPDK [3] holds
promise, but it is DPDK-specific and lacks P4Runtime support. Fi-
nally, the ebpf-psa backend is currently under construction [10].
Other software implementations of P4, e.g. [6], have similar limi-
tations.

The following section describes how OFP4 maps from P4 to
OpenFlow. Section 3 describes our proof-of-concept implementa-
tion of OFP4. Section 4 describes the testing we’ve done so far.
Section 5 states our conclusions and directions for future work.

P4 program p4c-of

of_model.p4

templates.dl
(DDlog

program)

Controller
(Differential Datalog)

P4 Runtime API

Open vSwitch

OVS API

DDlog 
compiler

P4Runtime
Controller

OpenFlow messages

P4Runtime messages

OFP4
Controller
runtime 

(Rust)

Figure 1: System architecture.

Source Code The source code for our OFP4 prototype is avail-
able under the MIT license at https://github.com/vmware/
nerpa in the ofp4 subdirectory.

2. Translating P4 to OpenFlow
Both P4 and OpenFlow enable SDN controllers to control packet
processing using a programming model based on match-action ta-
bles. OpenFlow exposes a relatively rigid architecture in compari-
son to P4, which even allows modeling new packet formats through
packet parsers. It may seem a strange choice to implement a flex-
ible model (P4) on top of a more constrained one (OF). However,
previous work [20] has shown that P4 can be used as a specifica-
tion language even for fixed-function switching pipelines, which
are not programmable at all! In building OFP4, we design a spe-
cific P4 architecture that models the capabilities of OpenFlow, in
particular with Open vSwitch extensions. A sketch of our P4 archi-
tecture file is given in Section A in the Appendix. Figure 1 shows
the architecture of our system. The box shown with dotted line is
under construction.

Protocols. P4 supports programmable parser and deparser blocks,
which enable developers to support both standard or experimental
network protocols. In contrast, OpenFlow and Open vSwitch sup-
port a fixed (though broad) set of protocols. Thus, OFP4’s P4 ar-
chitecture lacks parser and deparser blocks, supporting only a fixed
set of protocols, which are supplied as part of the of model.p4
architecture definition.

Pipelines. OpenFlow exposes a single pipeline, whereas hard-
ware switches tend to have ingress and egress pipelines separated
by buffering logic that replicates packets for multicast, mirror-
ing, and other purposes. Unlike parser and deparsers, though, P4’s
separate pipelines can be implemented in OpenFlow with Open
vSwitch extensions. We chose to implement an ingress and egress
pipeline because this makes OFP4 architecture more similar to the
widely known Portable Switch Architecture [12] (PSA) and the
older v1model [8] architecture for P4.

Metadata. P4 supports user-defined named metadata and local
variables, whereas OpenFlow and Open vSwitch provide only a
number of fixed-size generic metadata “registers”, mainly reg0
through reg15. The P4 compiler can map the former to the latter,
e.g. given the following P4 metadata structure definition:

s t r u c t m e t a d a t a {
b i t <12> v l a n ;
bool f l o o d ;

}

P4C-OF might map vlan to reg4[0..11], that is, the low 12 bits
of OVS metadata field reg4, and flood to reg5[0].

PSA and v1model also supply “standard” metadata with each
packet. OpenFlow and Open vSwitch provide some of the same
standard metadata, e.g. the packet’s ingress port, for OFP4 to
use directly. P4C-OF can allocate those without equivalents (e.g.,
standard metadata.egress spec in the ingress pipeline) to
registers.

1



a c t i o n Drop ( )
{ m a r k t o d r o p ( s t a n d a r d m e t a d a t a ) ; e x i t ; }

a c t i o n Se tVlan ( VlanID v i d ) { meta . v l a n = v i d ; }
a c t i o n UseTaggedVlan ( ) { meta . v l a n = hdr . v l a n . v i d ;}
t a b l e I n p u t V l a n {

key = {
s t a n d a r d m e t a d a t a . i n g r e s s p o r t : e x a c t ;
hd r . v l a n . i s V a l i d ( ) : e x a c t ;
hd r . v l a n . v i d : o p t i o n a l ;

}
a c t i o n s = { Drop ; Se tVlan ; UseTaggedVlan ; }
d e f a u l t a c t i o n = Drop ;

}

Figure 2: Excerpt of a P4 program for VLAN ingress processing.

Table Entries. A P4 table can be translated essentially one-to-
one into an OpenFlow table, with each P4 table entry correspond-
ing to one OpenFlow flow. Consider the P4 table definition for
InputVlan in Figure 2. This table initializes meta.vlan with the
packet’s VLAN. At runtime, OFP4 translates each entry in this
table into an OpenFlow flow. For example, an InputVlan en-
try to define port 5 as an access port for VLAN 10 might match
ingress port = 5, an invalid VLAN header, and wildcard vid,
with action SetVlan(10). If OFP4 maps table InputVlan to
OpenFlow table 2, then the corresponding generated flow using
Open vSwitch syntax would be

t a b l e =2 p r i o r i t y =100 i n p o r t =5 v l a n t c i =0
a c t i o n s = l o a d (10−> r eg4 [ 0 . . 1 1 ] ) , r e s u b m i t ( , 3 )

where the load action sets the metadata field allocated by the
compiler for meta.vlan (assumed to be reg4[0..11]) and
resubmit jumps to the next table in the pipeline.

Default Actions. A P4 table has a default action that executes
if no entry in the table matches. OFP4 can implement the default
action as an OpenFlow table entry with priority 0, ensuring that
other entries have priority 1 or higher. For example, OFP4 can
implement the Drop default action for InputVlan as the OpenFlow
flow

t a b l e =2 p r i o r i t y =0
a c t i o n s = l o a d (0−> r eg0 ) , r e s u b m i t ( , 3 1 )

where reg0 is the field allocated to the egress port and OpenFlow
table 31 separates the ingress and egress pipelines.

Expressions. P4 directly supports rich arithmetic expressions.
OpenFlow does not have equivalent constructs, but since Open
vSwitch flow tables and actions are Turing-complete, OpenFlow
could implement computations, albeit inefficiently. Initially OFP4
will only support a small subset of P4 expressions. Perhaps Open
vSwitch could be extended with actions performing arithmetic.

Multicast. Multicast and mirroring in PSA are implemented in
buffering logic between the ingress and egress pipelines. OFP4
implements this same logic with an OpenFlow table between those
used for the ingress and egress pipelines, currently table 31. For
each multicast group, a flow in this table matches the group’s
number against reg1[0..11], the metadata field allocated for the
destination, with actions that clone the packet to a particular egress
port and run it through the egress pipeline. For example, the flow
for multicast group 12, containing ports 34 and 56, would be

t a b l e =31 reg1 =12/0 x f f f a c t i o n s = c l o n e (
l o a d (34−> r eg3 ) , r e s u b m i t ( , 3 2 ) ) ,
c l o n e ( l o a d (56−> r eg3 ) , r e s u b m i t ( , 3 2 ) )

Control Flow. P4 control flow constructs translate to OpenFlow
in simple ways, with if and switch becoming OpenFlow table
lookups and return and exit becoming jumps to the OpenFlow
table that processes the end of the current pipeline, similar to the
implementation of P4 for the bmv2 backend.

Semantic differences. Changing a header in a P4 control block
affects the packet only after deparsing, but many OpenFlow ac-
tions operate directly on the packet. This is most important when
protocol headers must be added or removed. For example, in P4,
the deparser decides whether an outgoing packet includes a VLAN
header, whereas in OpenFlow an action adds or removes a VLAN
header immediately. The OpenFlow “action set” of actions that are
deferred until egress does not entirely bridge these differences, so
P4C-OF must still compensate for them.

Digests. OFP4 could implement P4 digest messages from the dat-
aplane to the control plane with OpenFlow “packet-in” messsages
which, as extended by Open vSwitch, allow sending the packet with
arbitrary additional data to the OpenFlow controller. OFP4 then
translates the “packet-in” message into a P4Runtime digest.

3. Prototype
OFP4 is currently an experimental prototype, shown in Figure 1.
We have not yet built the P4C-OF compiler, which would be a new
backend for the open-source p4c compiler [7, 8]. However, we have
manually translated a fixed P4 program into the expected output,
which we use in our experiments below.

The P4C-OF compiler converts a P4 program for the of
model.p4 architecture into a program written in the Differential
Datalog language (DDlog) [15, 16]. The DDlog program imple-
ments a control-loop, waiting for P4Runtime messages and sending
messages to an OvS instance.

The DDlog program is the core of the OFP4 daemon. The
P4Runtime API layer accepts RPCs to populate and update entries
in tables and memberships in multicast groups defined by that
program. OFP4 translates insertions/deletions in P4 tables into
OpenFlow flows, which it inserts/removes from OvS.

OFP4 is implemented in Rust. We used the Rust grpcio
crate [1] to interface to gRPC-based P4Runtime. We wrote manu-
ally the templates translating P4Runtime operation into OpenFlow
flows in DDlog. The salient DDlog feature that we use is that it is a
language for describing incremental computations: it only recom-
putes parts of the output that are affected by each input change. To
interface to Open vSwitch via OpenFlow, we wrote Rust wrappers
for Open vSwitch’s own libraries.

4. Evaluation
We have tested OFP4 with Nerpa [18], a programming framework
for co-design of control planes and data planes. When OFP4 is used
with the Nerpa controller and the P4 program for which OpenFlow
templates are implemented, OFP4 correctly computes and installs
the initial set of OpenFlow flows; it also reacts to P4Runtime mes-
sages generating the expected OpenFlow rules. OvS with OFP4
should perform comparably to hand-written OpenFlow. The imple-
mentation can be used with any OpenFlow switch that supports the
required extensions (either a hardware or a software device).

5. Conclusion
Given the limited landscape of today’s software P4 implementa-
tions, this paper explored the concept of mapping P4 into Open-
Flow. We described some of the challenges in such a translation
and their solutions and described a prototype. As future work, we
hope to refine our prototype to a degree where it can be useful for
production workloads.

2



References
[1] gRPC-rs. https://github.com/tikv/grpc-rs, April 2022.

[2] P4 open source programming language. https://p4.org/, April
2022.

[3] Sample applications user guide: Pipeline application. http://doc.
dpdk.org/guides/sample_app_ug/pipeline.html, April 2022.

[4] Antonin Bas, Andy Fingerhut, Anirudh Sivaraman, et al. Behavioral
model (BMv2). URL: https://github.com/p4lang/behavioral-model,
April 2022.

[5] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKe-
own, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vah-
dat, George Varghese, and David Walker. P4: Programming protocol-
independent packet processors. 44(3):87–95, July 2014.

[6] Mihai Budiu. Compiling P4 to eBPF. https://github.com/
iovisor/bcc/tree/master/src/cc/frontends/p4, 2015.

[7] Mihai Budiu and Chris Dodd. The P4-16 programming language.
ACM SIGOPS Operating Systems Review, 51(1):5–14, August 2017.

[8] Mihai Budiu, Chris Dodd, et al. p4c: Reference compiler for the P4
programming language. https://github.com/p4lang/p4c, April
2022.

[9] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: enabling innovation in campus networks. ACM SIGCOMM
computer communication review, 38(2):69–74, 2008.

[10] Tomasz Osiński, Mateusz Kossakowski, and Jan Palima̧ka. PSA im-
plementation for the ebpf backend. https://github.com/p4lang/
p4c/tree/master/backends/ebpf/psa/, April 2022.

[11] P4.org API Working Group. P4Runtime specification ver-
sion 1.3.0. https://p4.org/p4-spec/p4runtime/main/
P4Runtime-Spec.html, July 2021.

[12] P4.org Architecture Working Group. P416 portable switch archi-
tecture (PSA). https://p4.org/p4-spec/docs/PSA.html, April
2021.

[13] Justin Petitt, Jean Tourrilhes, et al. OpenFlow switch spec-
ification version 1.5.1 (protocol version 0x06). https:
//opennetworking.org/wp-content/uploads/2014/10/
openflow-switch-v1.5.1.pdf, March 2015.

[14] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J. Jackson, Andy
Zhou, Jarno Rajahalme, Jesse Gross, Alex Wang, Jonathan Stringer,
Pravin Shelar, Keith Amidon, and Martı́n Casado. The Design and
Implementation of Open vSwitch. In Network Systems Design and
Implementation (NSDI). USENIX, 2015.

[15] Leonid Ryzhyk and Mihai Budiu. Differential datalog. In Datalog
2.0, Philadelphia, PA, June 4-5 2019.

[16] Leonid Ryzhyk, Mihai Budiu, Daniel Müller, Chase Wilson,
et al. Differential Datalog. https://github.com/vmware/
differential-datalog, April 2022.

[17] Muhammad Shahbaz, Sean Choi, Ben Pfaff, Changhoon Kim, Nick
Feamster, Nick McKeown, and Jennifer Rexford. PISCES: A Pro-
grammable, Protocol-Independent Software Switch. In Special Inter-
est Group on Data Communication (SIGCOMM). ACM, 2016.

[18] Debnil Sur and Ben Pfaff. Nerpa: Network programming with rela-
tional and procedural abstractions. https://github.com/vmware/
nerpa, April 2022.

[19] Péter Vörös, Dániel Horpácsi, Róbert Kitlei, Dániel Leskó, Máté
Tejfel, and Sándor Laki. T4P4S: A target-independent compiler for
protocol-independent packet processors. In 2018 IEEE 19th Inter-
national Conference on High Performance Switching and Routing
(HPSR), pages 1–8, 2018.

[20] Konstantin Weitz, Stefan Heule, Waqar Mohsin, Lorenzo Vicisano,
and Amin Vahdat. Leveraging P4 for fixed function switches. In P4
Workshop, Stanford, CA, May 1 2019.

A. OpenFlow architecture in P4
Figure 3 shows the skeleton of the P4 architecture file for describing
an OpenFlow switch in P4.

/ / o f m o d e l . p4 a r c h i t e c t u r e f i l e

header E t h e r n e t {
b i t <48> s r cAddr ;
b i t <48> ds tAddr ;
b i t <16> e t h e r T y p e ;

}

. . .
/ / A l l OpenFlow h e a d e r s are pre −d e c l a r e d

/ / / A l l p o s s i b l e OF h e a d e r s
s t r u c t Headers {

E t h e r n e t e t h ;
IPv4 ipv4 ;
. . .

}

/ / A r c h i t e c t u r e does n o t have a p a r s e r

/ / S t a n d a rd me tada ta
s t r u c t s t d m e t a {

b i t<8> i n g r e s s p o r t ;
b i t<8> e g r e s s p o r t ;
. . .

}

/ / Headers are f i x e d .
/ / Use me tada ta has t y p e M.
c o n t r o l I n g r e s s<M>( i n o u t Headers h e a d e r s ,

i n o u t M meta ,
i n o u t s t d m e t a s t d ) ;

c o n t r o l Egress<M>( i n o u t Headers h e a d e r s ,
i n o u t M meta ,
i n o u t s t d m e t a s t d ) ;

/ / OpenFlow top − l e v e l package .
package OF<M>( I n g r e s s<M> i , Egress<M> e ) ;

Figure 3: P4 architecture file describing the OpenFlow pipeline.

3


