
Revisiting the Open vSwitch Dataplane Ten Years Later
William Tu

VMware
United States

tuc@vmware.com

Yi-Hung Wei
VMware

United States
yihungw@vmware.com

Gianni Antichi
Queen Mary University of London

United Kingdom
g.antichi@qmul.ac.uk

Ben Pfaff
VMware Research

United States
bpfaff@vmware.com

ABSTRACT
This paper shares our experience in supporting and running the
Open vSwitch (OVS) software switch, as part of the NSX product for
enterprise data center virtualization used by thousands of VMware
customers. From its origin in 2009, OVS split its code between
tightly coupled kernel and userspace components. This split was
necessary at the time for performance, but it caused maintainability
problems that persist today. In addition, in-kernel packet processing
is now much slower than newer options (e.g. DPDK).

To solve the problems caused by the user/kernel split, OVS must
adopt a new architecture. We describe two possibilities that we ex-
plored, but did not adopt: one because it gives up compatibility with
drivers and tools that are important to virtual data center operators,
the other because it performs poorly. Instead, we endorse a third
approach, based on a new Linux socket type called AF_XDP, which
solves the maintainability problem in a compatible, performant
way. The new code is already merged into the mainstream OVS
repository. We include a thorough performance evaluation and a
collection of lessons learned.

1 INTRODUCTION
Compute virtualization is commonplace in data center networks [6].
Communication endpoints are no longer physical servers, but rather
virtual machines (VMs) or containers, whose networking is typically
managed through a network virtualization system such as VMware
NSX [77] or Microsoft Hyper-V [44]. These systems apply high-
level policies to incoming packets, forwarding them to physical
interfaces, containers, or VMs using a software switch, e.g., VFP [24],
Contrail vRouter [35], or Open vSwitch [56].

In this paperwe share our experience in supportingOpen vSwitch
(OVS), which is adopted in many data center networks [1, 21, 50]
and which is now a component of VMware’s NSX product, used
by thousands of customers. When the development of OVS started,
one of the design goals was to achieve compatibility with existing
software. For instance, OVS was at the time an upstart competitor
to the “Linux bridge” [36], which dominated the category on Linux,
and thus OVS provided bridge compatibility utilities, daemon, and
even an additional kernel module to make migration easy. OVS
also maintained compatibility with kernel network device drivers
and tools, such as ip, ping, and tcpdump. This kind of compatibil-
ity was needed so obviously that it was not even discussed; any
other option would have severely curtailed OVS adoption. Bridge

compatibility has gone by the wayside, but driver and tool compat-
ibility remains important. For VMware, this is because OVS is the
dataplane of NSX, which supports deployment scenarios ranging
across many Linux distributions, kernel versions and variants, and
physical and virtual hardware.

Another important design goal that we considered was perfor-
mance. When OVS was originally designed, only the kernel could
process packets at high speed, but OVS was too complex to imple-
ment entirely inside the kernel. Thus, the original OVS architecture
split its code between a userspace process, which set policy, and
a kernel module, which provided the least mechanism needed to
implement the policy with high performance [56]. The kernel mod-
ule was tightly coupled both to Linux kernel internal interfaces
and to the userspace process. This was the only design that met
the performance and feature requirements, a design accepted by
both OVS and kernel developers, but the tight coupling led to the
following drawbacks, which have caused substantial problems for
OVS developers and users:

• Maintainability: Linux and Open vSwitch are separate projects
with largely different developers. The tight coupling between the
kernel module and userspace means these two groups must come
to one consensus on design and development. Features in OVS
are limited by what Linux developers will accept in principle and
then in implementation. Section 2.1 will detail these issues.

• Operability: OVS upgrades or bug fixes that affect the kernel
module can require updating the kernel and rebooting production
systems, disrupting any workloads running there or requiring
them to be migrated to another server.

• Performance: Conventional in-kernel packet processing is now
much slower than newer options such as DPDK.

A tightly coupled user/kernel split is the root of these prob-
lems, so to solve them OVS must embrace a new architecture. Sec-
tions 2.2.1 and 2.2.2 describe two strategies that we have explored,
but not adopted, because they give up compatibility with existing
tools or perform poorly.

We finally converged on a third approach, which is presented in
this paper. The main idea is to bring most of the packet processing
into userspace using a new Linux socket type called AF_XDP [13].
We discuss how this solution guarantees compatibility with ex-
isting software and report on the challenges we faced to enable
high performance packet processing (Section 3). We then describe
how we integrated the new OVS with our network virtualization
solution (Section 4), i.e., VMware NSX [77], and evaluated it using

1

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Tu, et al.

production-grade settings (Section 5) on different communication
scenarios, i.e., intra-host and inter-host VM to VM as well as con-
tainer to container. The new OVS approaches or matches the perfor-
mance of OVS with DPDK: for container networking, it even beats
DPDK processing latency by 12×, with 4× the throughput. Besides
the pure performance capabilities, the benefits introduced by the
new OVS have been substantial. With this new architecture, OVS
can be now easily installed and upgraded in customer virtualized
deployments. Moreover, validation and troubleshooting have been
simplified. We detail these and other lessons learned (Section 6).

This paper makes the following contributions:
• Wemake the case for adopting AF_XDP as packet I/O channel for
software switches, presenting a design of a userspace datapath
for OVS.

• We demonstrate the implementation and performance optimiza-
tions of AF_XDP userspace driver for OVS.

• We show how the new OVS integrates with existing network
virtualization solutions, such as NSX.

• We evaluate the new OVS using production-grade configurations.
• We discuss the challenges alongside associated solutions and the
lessons we learned after two years spent in trying to migrate the
datapath of OVS from in-kernel to userspace.

• We merged our code into the OVS upstream repository [26, 73].
Documentation and artifact evaluation information can be found
here: https://github.com/williamtu/sigcomm21-ovs-artifacts
This work does not raise any ethical issues.

2 ENTERPRISE CHALLENGES
VMware NSX is an enterprise product, which means that customers
install it in their own physical and virtual data center environments.
Open vSwitch, the NSX dataplane on Linux hypervisors and in pub-
lic clouds, must therefore support customer deployment scenarios
ranging across many Linux distributions, kernel versions and vari-
ants, and physical and virtual hardware. The following sections
explore the consequences.

2.1 Maintainability
OVS is a separate project from Linux, with different goals and differ-
ent developers. To add a new OVS feature with a kernel component,
OVS developers must convince the Linux kernel team to accept it.
Linux kernel developers expect the new code to be well motivated,
easily understood, necessary for performance, and maintainable
over time. Furthermore, kernel policy forbids changing behavior
that a user program might rely on [65]. This policy benefits users
because programs that work with a particular Linux kernel will
still work with any later one. The policy includes Open vSwitch
userspace, that is, if kernel version x supports a given version of
OVS, then so must every kernel version y > x . Thus, the OVS ker-
nel module cannot change, but only extend, the interface it offers
to userspace. The kernel module has hundreds of lines of advice
on how to extend it correctly [55], but the level of difficulty is high
enough that developers are still reluctant to do so.

The high bar to acceptance discourages developers from propos-
ing features that would require experimentation or refinement, and
Linux developers do reject some new OVS features. For example,
they rejected support for the Stateless Transport Tunneling (STT)

 0

 5000

 10000

 15000

 20000

 25000

’15 ’16 ’17 ’18 ’19

L
in

e
s
 o

f
c
o

d
e

 c
h

a
n

g
e

d

Year

New Features

Backports

Figure 1: Lines of code changed
in the last 5 years in the OVS
repository’s kernel datapath.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

kernel DPDK eBPF

P
o

rt
 F

o
rw

a
rd

in
g

 R
a

te
 (

M
p

p
s
)

Datapath technology

Figure 2: OVS forwarding per-
formance for 64-byte packets
and a single core.

encapsulation due to claimed effects on routers [46, 60] and for
an exact-match flow cache because of an objection to caches as a
networking software design principle [47, 61].

For other features that do see eventual acceptance, the tight
user/kernel coupling causes years of delay. Such features come
along frequently, e.g. due to new protocols being standardized,
such as VXLAN, NVGRE, Geneve, and NSH in past years. After
code review, a new feature is merged to the next upstream Linux
kernel version. Linux distribution vendors such as Ubuntu and Red
Hat then infrequently update their kernels from upstream. Finally,
data center operators often wait a considerable time after release
to update their distributions. Therefore, new OVS features with
kernel components become available to production users one to
two years, or even longer, after the kernel component is merged.

Takeaway #1: A split user/kernel design limits and delays
feature support in software switches.

2.1.1 Out-of-Tree Kernel Module. In the past, OVS developers par-
tially addressed the problem of slow feature delivery by supplying
sources for an up-to-date OVS kernel module with OVS. Whereas
a given Linux kernel release, say 4.11 or 5.9, does not receive new
features over time, only bug fixes, the kernel module supplied with
OVS, often called the “out-of-tree” kernel module, includes all the
latest features and works with a wide range of kernel versions. In
practice, the out-of-tree kernel module enables the latest features
without upgrading the kernel.

The out-of-tree kernel module is, however, an evergreen source
of problems. As a matter of policy, new features always start out
in the upstream Linux tree, since going the other direction risks
adding a feature to OVS that will never be accepted upstream. Thus,
the out-of-tree module is always in the process of catching up to the
upstream one. Figure 1 shows the lines of code added or removed
in the out-of-tree module to add new upstream features under the
label “New Features.”

Second, the out-of-tree module requires developers to run faster
and faster just to stay in the same place. The “Backports” bars in
Figure 1 shows that the module requires thousands of lines of code
changes every year just to stay compatible with new kernel releases.
This can be more work than actually adding desired features. For
example, consider our contribution of ERSPAN support to Open
vSwitch, which added about 50 lines of code in the kernel mod-
ule [68, 69]. Older kernels didn’t have the IPv6 GRE infrastructure
that this patch built on, so we had to add over 5,000 lines that

2

Revisiting the Open vSwitch Dataplane Ten Years Later SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

Command Purpose
$ ip link network device configuration
$ ip address display and modify IP addresses
$ ip route display and alter the routing table
$ ip neigh display and alter the ARP table
$ ping check L3 connectivity
$ arping check L2 connectivity
$ nstat display network statistics
$ tcpdump packet analysis

Table 1: Commands commonly used to configure and troubleshoot
Linux kernel managed network devices. These commands do not
work on a NIC managed by DPDK.

combined 25 upstream commits to the out-of-tree module to sup-
port it there [57]. We still had to follow up to fix bugs, both those
discovered in Linux and those we introduced in porting. Another
example is per-zone connection limiting. In the kernel, we added
about 600 lines for the feature [79]. In the out-of-tree module, we
also had to add 700 lines based on 14 upstream commits, followed
later by a combination of 14 more for bug fixes. Each commit we
looked at for these features took considerable engineer effort to
understand, compare among kernel versions, update, and review.

Third, one must validate an out-of-tree kernel module on every
deployment target. Considering just NSX customers, this is a multi-
tude considering the kernel versions used across cloud providers,
common enterprise Linux distributions such as SLES or RHEL, and
less well-known Linux distributions such as IBM LinuxONE and
Oracle Linux. Also, some of these distributions require complicated
steps to load out-of-tree modules.

Fourth, enterprise distributions will not support systems with
third-party kernel modules. Production users often have support
contracts with distributors, so adding new features in the out-of-
tree module is not a viable way to support these users.

For these reasons, developers have judged the costs of main-
taining the OVS out-of-tree kernel module to exceed the benefits.
OVS 2.15, released in February 2021, deprecated the out-of-tree
module and froze the latest supported kernel version. OVS 2.18, to
be released in August 2022, will remove it entirely [58].

Takeaway #2: An “out-of-tree” kernel module does not fix
problems caused by a split user/kernel software switch
design.

2.2 Architecture
Oncewe accept that OVS’s traditional architecture, with a userspace
process tightly coupled to a kernel component, is the root of the
problems that we highlighted in the foregoing sections, we can
start to consider alternatives. We did not consider adopting other
software switches, such as BESS [30] or VPP [4], because they do not
support OpenFlow or the OVS extensions that NSX uses. Enabling
NSX on them would have entailed a significant engineering effort
on software stacks new to us. The obvious solution was to start
from OVS and rethink its architecture.

2.2.1 All-Userspace OVS with DPDK. We can solve the architec-
tural problem bymoving all of OVS to userspace. For years, OVS has
supported all-userspace software switching using DPDK [17, 53],
a library to accelerate packet processing workloads. This avoids

the maintainability challenges that come from spanning Linux and
OVS development. Additionally, OVS with DPDK can simply be
restarted for upgrades or bug fixes as no kernel upgrade or reboot
is needed. Using DPDK frees OVS from maintaining compatibility
with rapidly changing Linux internal interfaces, but DPDK also
changes the interfaces it presents to software like OVS from one
version to the next. The corresponding changes to OVS are signifi-
cant enough that each OVS release requires a specific version of
DPDK and that OVS needs a dedicated branch in its repository to
keep up with DPDK compatibility.

OVS with DPDK suffers from a different class of compatibil-
ity problems, which have kept it from the success of its in-kernel
counterpart [81]. DPDK uses its own network device drivers and
operates without kernel involvement, so well-known tools to con-
figure, manage, and monitor NICs, including those listed in Table 1,
do not work with NICs in use by DPDK, which makes DPDK setups
difficult to manage and debug [32]. Instead, users have to use DPDK-
specific tools, i.e, testpmd [18], dpdk-pdump, dpdk-procinfo [19].
This is a problem in large-scale deployments that include VMs,
containers, physical machines over a variety of Linux distributions
and team collaborations, because the additional maintenance of the
tools and operational cost make this approach unattractive.

Administrators must dedicate NICs to use with DPDK, which
means that they must maintain two separate networking configu-
rations, one for the kernel, one for DPDK, increasing their manage-
ment burden. DPDK is also notorious for its strict system require-
ments and unstable API [43]. Finally, DPDK performance requires
dedicating one or more CPU cores to switching, a choice that non-
NFV customers usually reject in public cloud deployments because
of per-core pricing [76].

Takeaway #3: DPDK is fast, simplifies upgrade, and eases
work for developers, but it is incompatible with the tools
and systems that users expect to use.

2.2.2 Decoupling the Kernel with eBPF. It is also possible to retain
OVS’s existing user/kernel division, but replace the kernel module
by an eBPF program. eBPF [25] allows specially written programs
to safely run in an in-kernel sandbox, without changing kernel
source code or loading kernel modules. Distributions are willing to
support third-party eBPF programs because of eBPF’s safe, sand-
boxed implementation. An implementation of OVS based on eBPF
would solve maintainability and operability problems and retain
compatibility with customary tools.

eBPF, however, has substantial limitations. The sandbox limits
the size of an eBPF program, and though it lets multiple programs
be chained together, it still restricts OVS capabilities. The sandbox
also caps eBPF complexity by disallowing loops. These restrictions
mean that the eBPF datapath lacks some OVS datapath features.
The sandbox restrictions, for example, preclude implementing the
OVS “megaflow cache” that is important for performance in many
situations.1

Performance is also important. A sandboxed, bytecode imple-
mentation of code in eBPF runs slower than comparable C. Figure 2

1The megaflow cache could be implemented as a new form of eBPF “map” but the
kernel maintainers rejected this proposal [71].

3

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Tu, et al.

Kernel Space

tool

Userspace

OVS with DPDK

Driver

Networking
Tools

DPDK Library

OVS
Datapath

eth0

Data path
Control path

AF_XDP

OVS with AF_XDP

Network Stack

rtnetlink,
syscall

Networking
Tools

OVS
Datapath

eth0

XDP
Device
DriverDevice Driver

OVS with kernel module or eBPF

rtnetlink,
syscall

Networking
Tools

eth0

OVS
Datapath

Network
Stack

Figure 3: Comparison between standard OVS, OVS attached to a DPDK device and OVS attached to a Linux kernel managed device with
AF_XDP.

compares the performance of OVS in practice across three datap-
aths: the OVS kernel module, an eBPF implementation, and DPDK.
The test case is a single flow of 64-byte UDP packets, which is a
case that does not rely on the megaflow cache for performance.
Unfortunately, the sandbox overhead makes eBPF packet switching
10–20% slower than with the conventional OVS kernel module [66].
This is enough to disqualify it from further consideration.

Takeaway #4: eBPF solves maintainability issues but it is
too slow for packet switching.

2.2.3 Mostly Userspace OVS with AF_XDP. Finally, we settled on a
third approach using AF_XDP, a socket address family available in
Linux 4.18 and later [13]. AF_XDP builds on XDP [8, 32, 48], which
is a “hook point” in each NIC network driver where a userspace
program may install an eBPF program. The NIC driver executes
the XDP program on every received packet, even before it takes
the expensive step of populating it into a kernel socket buffer data
structure.

AF_XDP gives an XDP hook program the ability to send its
packet to userspace across a high-speed channel (see Section 3),
bypassing the rest of the Linux networking stack. To use AF_XDP,
OVS installs an XDP hook program that simply sends every packet
to OVS in userspace.

OVS with AF_XDP reduces the coupling between OVS and the
kernel to that of a tiny eBPF helper program which is under the
Open vSwitch community’s control. The helper program just sends
every packet to userspace, in contrast to the eBPF program de-
scribed in the previous section, which had the same complexity and
feature set as the OVS kernel module. In addition, XDP and AF_XDP
are “stable” kernel interfaces: kernel developers commit that XDP
programs and AF_XDP sockets will continue to work the same way
they do now in future kernel versions. OVS implements its own
AF_XDP driver, even though OVS could use DPDK’s AF_XDP Poll
Mode driver [16]. Initially, this was because the OVS AF_XDP dri-
ver predated the one in DPDK. Now, for non-performance critical
customers, deploying OVS with DPDK just to use its AF_XDP dri-
ver consumes too much CPU and memory. Using the DPDK driver

would also force the OVS community to keep up with changes in
DPDK, increasing maintenance overhead.

Using AF_XDP also simplifies upgrades and bug fixes from re-
booting or reloading a kernel module to simply restarting OVS.
Most importantly, AF_XDP provides compatibility with the same
Linux networking tools as in-kernel OVS and with every Linux
distribution.

Figure 3 conceptually compares the standard OVS with in-kernel
datapath, OVS in eBPF, with DPDK and with AF_XDP. The first
two are merged together because in both cases the OVS dataplane
resides in the Linux network stack: while the standard OVS datapah
is a kernel module, the other is a eBPF program attached to the
traffic control (tc) hook of the kernel. With DPDK, a userspace driver
for the NIC entirely bypasses the Linux kernel, which creates the
compatibility issues discussed above.With AF_XDP, OVS and Linux
use the standard kernel NIC driver, which supports the standard
system calls and rtnetlink interface [49, 74], and that in turn means
that the existing monitoring and management tools based on those
continue to work. Later, we will also discuss some cases where a
small amount of additional sophistication in the XDP hook program
provides additional benefits.

3 OVS WITH AF_XDP
This section provides some background on AF_XDP and discusses
the challenges we faced in implementing OVS with this new Linux
socket type. The main objective was to optimize our system so to
provide performance comparable to kernel-bypass solutions while
retaining compatibility with existing tools for network monitoring
and management.

3.1 Background on AF_XDP
AF_XDP gives an XDP hook program the ability to send its packet
to userspace, bypassing the rest of the Linux networking stack. On
the left side of Figure 4, we show the typical workflow for installing
an eBPF program to an XDP hook point. Clang and LLVM take
a restricted C program as input and output it to an ELF object
file, which contains the eBPF instructions. An eBPF loader, such as
iproute, then issues appropriate BPF syscalls to verify and load the
program. If the program passes this stage, it is attached to the hook

4

Revisiting the Open vSwitch Dataplane Ten Years Later SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

Kernel Space

tool

Userspace

Network Stack

umem

Application

XDP

Device Driver

eBPF code LLVM +
Clang

iproute

in-kernel
verifier

RX fill

AF_XDP

3

5

packet

RX completion

1

2 4

6
XSK

socket

Figure 4: The workflow of XDP eBPF development process and the
AF_XDP packet flow on the receiving side.

point (in this case XDP). Subsequently, any packet that reaches
the XDP ingress hook will execute the eBPF program. The XDP
program in the figure sends every received packet to userspace via
the AF_XDP socket or “XSK”, which is the user/kernel interface to
this mechanism. Each XSK uses an Rx and a Tx data structure in
userspace, each of which in turn points to a memory area called a
umem. A umem consists of two rings: a fill ring and a completion
ring. To receive packets, the userspace program appends empty
descriptors to the Rx fill ring (path 1). When a packet arrives,
the kernel pops a descriptor from the ring (path 2), writes packet
data into its attached memory (path 3), and pushes it onto the Rx
completion ring (path 4). Later, the userspace program fetches
packet data from descriptors on the Rx completion ring (path 5)
so it knows where to find the packets to process in umem (path 6).
After it finishes processing them, it re-attaches them to the Rx fill
ring to receive new incoming packets. Sending packets works in a
similar way using the Tx fill and completion rings.

The following subsections describe our work for physical devices,
virtual devices, and containers. The performance results quoted
in these sections are from back-to-back Xeon E5 2620 v3 12-core
(2.4 GHz) servers, each with a Mellanox ConnectX-6 25GbE NIC
and running Ubuntu kernel 5.3. One server generated a single UDP
flow with 64-byte packets, which a second server processed using
OVS with AF_XDP. We report the maximum throughput sustained
by OVS before starting to drop packets.

3.2 Physical Devices
Table 2 shows the performance we obtained for our physical NICs
along with the various optimizations we implemented. The follow-
ing subsections provide further details.

O1: Dedicated thread per queue. By default, the OVS “userspace
datapath” processes packets with the same general-purpose thread
that it uses for other tasks, including OpenFlow and OVSDB pro-
cessing. This is the same code and the same approach that OVS used
with DPDK, by default. However, when we used strace to analyze
the pattern of system calls in this model, we found that it spent a
lot of CPU time polling. We addressed the problem by configuring
PMD (poll-mode-driver) threads, which are threads dedicated to
packet processing. Each PMD thread runs in a loop and processes
packets for one AF_XDP receive queue. Enabling PMD threads
improved performance by 6×, from 0.8 Mpps to 4.8 Mpps.

Optimizations Rate (Mpps)
none 0.8
O1 4.8
O1+O2 6.0
O1+O2+O3 6.3
O1+O2+O3+O4 6.6
O1+O2+O3+O4+O5 7.1*

Table 2: Single-flowpacket rates for 64-byteUDPbetween a physical
NIC and OVS userspace with different optimizations. *Estimated

ovs-vswitchd

OVS Datapath

VM/
Container

virtio-
user

NIC

Virtual
Device Driver

Userspace

Hardware

Packet Flow

Kernel
Space

vhostuser

Filename: containeroverhead

XDP

A

B

Device
Driver XDP

C

Figure 5: A physical NIC with AF_XDP support can directly DMA
packet buffers into the OVS userspace datapath. This might not be
helpful in the presence of virtual devices.

O2: Spinlock instead of mutex. OVS configures a region of user-
space memory so that, with kernel assistance, network devices can
directly access it. We wrote a userspace library called umempool to
manage this memory, as in [72]. The umem regions require syn-
chronization, even if only one thread processes packets received in
a given region, because any thread might need to send a packet to
any umem region. We initially used a POSIX mutex to synchronize
access. Linux perf showed that the threads spent around 5% of
their CPU time in the mutex function pthread_mutex_lock, even
when we deployed a single queue with a single thread. We realized
later that locking a mutex could context switch the current process.
Thus, we switched to spinlocks, which have less than 1% overhead
when there is no contention. This improved performance by 1.25×,
from 4.8 Mpps to 6.0 Mpps.

O3: Spinlock batching. The basic AF_XDP design assumes that
packets arrive in a userspace rx ring in batches. This allows OVS
to fetch multiple packets at the same time. However, each batch
receive operation requires some additional housekeeping work.
For example, each successful batch receive is also paired with a
request from the umempool for more usable buffers to refill the
XSK fill ring for the next incoming packets. Each operation needs a
lock to prevent contention. Linux perf showed that our initial lock
implementation, which gave each packet in each umempool its own
spinlock, was too fine-grained. Therefore, we optimized it with a
more coarse-grained lock that batched multiple packets together.
We also batched multiple umempool accesses, and shared multiple
operations across a spinlock. This improved the performance by
1.05×, from 6.0 Mpps to 6.3 Mpps.

O4: Metadata pre-allocation. OVS uses the dp_packet structure
to track each packet’s metadata, including its input port, the offset

5

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Tu, et al.

Steering

Q1

XDP

Network Stack

NIC

Filename: xdpqueue

(A)

Q2 Q3 Q4

XDP XDP XDP

Steering

Q1

Network
Stack

NIC

(B)

Q2 Q3 Q4

XDP XDP

Figure 6: XDP program can be attached to either all or a subset of
the receive queues, depending on the vendor’s driver.

of its L3 header, and a NIC-supplied hash of the packet’s headers.
Using strace, we noticed that the mmap system call used to allocate
dp_packet structures entailed significant overhead. To avoid it,
we pre-allocated packet metadata in a contiguous array and pre-
initialized their packet-independent fields. Using a single array also
improved cache locality. This optimization increased performance
by 1.04×, from 6.3 Mpps to 6.6 Mpps.

O5: Checksum offload. Modern NICs offer hardware features to
reduce the CPU cost of packet processing, such as checksum calcu-
lations, pushing and popping VLAN tags, and TCP segmentation.
Both the Linux kernel and DPDK support these offloads in their
hardware NIC drivers. AF_XDP does not yet, although it has a
framework to support them through a generic NIC metadata area
defined using a format called BTF (BPF Type Format) and XDP
hints [39, 78]. We have been working with the XDP community
and device vendors to get checksum offload support from their
drivers. To estimate the potential for improvement from AF_XDP
checksum offload, we modified our code to transmit a fixed value
for the packet’s checksum and to assume at receive time that the
checksum is correct. This improved performance by 1.07×, from
6.6 Mpps to 7.1 Mpps. We expect better results with bigger packets
because the checksum’s cost is proportional to the packet’s payload
size. TCP segmentation offload can also offer major benefits for
bulk TCP workloads but it is not relevant for the below-MTU size
packets that we used here.

3.3 Virtual Devices
The optimizations discussed above enable fast packet I/O between
a physical NIC and OVS userspace, but not between OVS userspace
and a VM or container within the same host.

To send packets to a local VM, OVS with AF_XDP typically uses
the sendto system call to send packets through a Linux kernel
virtual “tap” interface, following path A in Figure 5. We measured
the cost of this system call as 2 µs on average, which is much
more than in the traditional OVS user/kernel model, where passing
a packet to the tap device was just an intra-kernel function call
with the data already resident in kernel memory. This drops the
7.1 Mpps throughput achieved by the previous optimizations to
just 1.3 Mpps. To overcome this issue, we reconfigured our VM to
directly use the same vhost protocol that the kernel’s tap device
implements [3, 29]. Using this “vhostuser” implementation, packets

traverse path B , avoiding a hop through the kernel. This change
increased performance to 6.0 Mpps, similar to a physical device.

3.4 Containers
Most non-NFV applications rely on kernel sockets for network
access, which means that regardless of how packets arrive at a
VM or container, a kernel TCP/IP stack must initially receive and
process them. For a VM, the kernel in question is the VM’s kernel;
for a container, it is the host kernel. For two containers within the
same host, the in-kernel switch works efficiently across a kernel
“veth” virtual device, which passes packets from one kernel network
namespace to another without a data copy. In this case, adding a
round trip through OVS userspace, via AF_XDP or otherwise, hurts
performance due to extra context switches and packet copies.

We are still exploring ways to optimize this case. Enabling zero-
copy AF_XDP in veth [67] would eliminate the packet copy penalty.
Another option is to modify the OVS XDP program to bypass OVS
userspace for the container’s packets, sending them directly to its
veth driver, along path C . This solution avoids expensive copies of
the data from kernel to userspace, at the cost of adding logic in the
XDP program. Section 5.4 will explore performance trade-offs to
adding logic at the XDP level. Finally, if the container application
can be modified, users can use dpdk-vhostuser library for container
applications [20, 62] and a userspace TCP/IP stack [23, 28].

3.5 Extending OVS with eBPF
Our new model for OVS attaches a simple eBPF program to the
XDP hook point to send packets to OVS in userspace through
an AF_XDP socket. One may extend this program to implement
new functionality at the device driver level. One example is what
discussed above in the context of container networking. Another
example is to implement an L4 load-balancer in XDP targeting a
particular 5-tuple, which directly processes any packet that matches
the 5-tuple and passes non-matching packets to the userspace OVS
datapath. These examples benefit from avoiding the latency of extra
hops between userspace and the kernel. Other reasons to extend the
eBPF program include integrating third-party eBPF programs with
Open vSwitch and dividing responsibility for packet processing
across multiple userspace daemons with multiple AF_XDP sockets.

eBPF might be especially useful for integrating with 3rd-party
software that is not amenable to implementation via the OpenFlow
protocol that OVS supports. Many high-level languages support
eBPF bytecode as their compile target. Developers can write in C
and compile with LLVM and Clang, or use another language with
an eBPF backend, such as P4 [9, 70], Rust [22], and Python [7]. Fur-
thermore, XDP has a well-defined runtime interface to interact with
the kernel, allowing third-party XDP programs to easily integrate
into OVS and to be updated without restarting OVS.

Limitations. Intel, Mellanox, and other vendors have already added
Linux driver support for AF_XDP. With NICs that still lack full sup-
port, OVS uses a fallback mode that works universally at the cost
of an extra packet copy, reducing performance [15]. Moreover, ven-
dors support different models for attaching XDP programs to a
network device.

Figure 6(a) shows the attachment model currently adopted for
Intel NICs, in which all traffic coming into the device triggers the

6

Revisiting the Open vSwitch Dataplane Ten Years Later SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

(a)

ovs-vswitchd

Kernel
Space

OpenFlow OVSDB
Userspace

ovsdb-server

Device Driver

Network
Stack

OVS
Datapath

NSX Agent

Conntrack

(b)

chd

Kernel Space

OVS Datapath

NSX Agent

OpenFlow OVSDB

Userspace
AF_XDP

ovsdb-server

Conntrack

Device
DriverXDPNetwork

Stack

ovs-vswitchd

Figure 7: Our network virtualization system, NSX, integrated with: (a) the OVS kernel datapath and (b) OVS with AF_XDP.

XDP program. Any program that needs to distinguish between
different types of traffic, e.g. to treat management traffic differently,
must implement XDP program logic to parse the protocol and
forward the desired traffic to the Linux network stack.

Figure 6(b) shows the attachment model currently adopted for
Mellanox NICs, in which an XDP program can be attached to a sub-
set of a device’s receive queues, e.g. only queues 3 and 4 as shown
in the figure. In this model, users may program the NIC hardware
flow classification rules, e.g. with ethtool --config-ntuple, to
distinguish different type of traffic in hardware, then write simpler
per-queue programs. This model is more flexible, although hard-
ware has limited matching fields and therefore more complicated
case still require software steering logic.

4 INTEGRATING OVS WITH NSX
NSX is a network virtualization system that, in 2019, VMware
reported to be used by 10,000 customers, including 82 of the For-
tune 100 [31]. NSX allows an administrator to overlay a virtual
network with L2 and L3 elements, firewalling and NAT, and other
features, on top of a physical network of hypervisors, bare-metal
hosts, and public cloud VMs. NSX uses OVS as its dataplane for
Linux hypervisors and public cloud VMs.

Figure 7(a) and (b) show how NSX integrates with OVS on a
hypervisor in the existing and new model, respectively. In both
models, the NSX controller has an agent that connects remotely to
the NSX central controller using a proprietary protocol and locally
to OVS using OVSDB and OpenFlow. The NSX agent uses OVSDB,
a protocol for managing OpenFlow switches, to create two bridges:
an integration bridge for connecting virtual interfaces among VMs,
and an underlay bridge for tunnel endpoint and inter-host uplink
traffic. Then it transforms the NSX network policies into flow rules
and uses the OpenFlow protocol to install them into the bridges.
The agent uses both protocols to maintain and monitor bridge,
device, and flow state. The NSX agent can also configure OVS to
integrate with third-party packet processing software, such as Deep
Packet Inspection (DPI) engines.

Figure 7(a) shows NSX using OVS in the traditional split user/k-
ernel model. The OVS userspace ovs-vswitchd process works with
the datapath kernel module, which in turn interfaces to other parts
of the kernel, including the TCP/IP network stack, the connection
tracking module, and device drivers.

Figure 7(b) shows NSX using OVS with AF_XDP. Here, the
packet processing datapath is outside the kernel, inside userspace
ovs-vswitchd. OVS manages the XDP program: it uses the kernel
version to determine the available XDP features, detects the LLVM
and Clang version for compiling the eBPF program, and loads and
unloads XDP programs when users add or remove a port in the
OVS bridge.

By moving packet processing to userspace, bypassing the Linux
networking subsystem entirely, OVS loses access to many services
provided by the kernel’s networking stack. NSX depends on many
of these, such as connection tracking for firewalling in the kernel’s
netfilter subsystem, the kernel’s GRE, ERSPAN, VXLAN, and Gen-
eve encapsulations, and the quality of service (QoS) traffic policing
and shaping features from the kernel’s TC subsystem. Therefore,
OVS uses its own userspace implementations of these features, built
by OVS developers over a period of years [52]. NSX accesses these
features via OVSDB and OpenFlow, not directly through the kernel,
so it needs no changes to use the userspace implementations.

To implement L3 encapsulations such as Geneve, OVS must
support IP routing and ARP (for IPv4) or ND (for IPv6). OVS imple-
ments all of these in userspace too, but the NSX agent and other
hypervisor software directly use the kernel’s implementations of
these features. Therefore, to maintain compatibility, OVS caches
a userspace replica of each kernel table using Netlink, a Linux-
specific socket type for configuring and monitoring the kernel.
Using kernel facilities for this purpose does not cause performance
problems because these tables are only updated by slow control
plane operations.

OVS also needs a reliable TCP/IP stack to allow the switch to
connect to its controller. We could use a userspace TCP/IP stack [23,
28], but we were not convinced they are production ready. Instead,
we decided to use the Linux kernel TCP/IP stack by setting up a tap
device for injecting packets from userspace into the kernel and vice
versa. This is slow, but it is acceptable because management traffic
does not require high throughput. If it proves too slow later, we can
modify the XDP program to steer the control plane traffic directly
from XDP to the network stack, while keep pushing dataplane
traffic directly to userspace with the AF_XDP socket.

7

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Tu, et al.

Entity Count
Geneve tunnels 291
VMs (two interfaces per VM) 15
OpenFlow rules 103,302
OpenFlow tables 40
matching fields among all rules 31

Table 3: Properties of the OpenFlow rule set, taken from one of our
hypervisors, used for performance evaluation.

5 PERFORMANCE EVALUATION
In this section we evaluate the performance of OVS version 2.14
with AF_XDP and compare it against its in-kernel and DPDK 20.05
counterparts in different scenarios.

5.1 NSX Performance
Our first test aims at reproducing a full NSX deployment. We used
two Intel Xeon E5 2440 v2 2.4 GHz servers connected back-to-back,
both with 8 cores and hyperthreading enabled, running Ubuntu
Linux with kernel 5.3.0 and equipped with Intel 10 GbE X540 dual-
port NICs. Both servers ran OVS and an NSX agent deploying
around 103,000 production grade OpenFlow rules taken from one
of our hypervisors, to mimic a real world deployment.

Table 3 shows some statistics about the NSX OpenFlow flow
tables, which include Geneve tunneling and a distributed firewall
with connection tracking. With these flow tables, many packets
recirculate through the datapath twice. The initial lookup examines
the packet’s outer Ethernet header, determines that it is a tunneled
packet that NSX must handle, and directs it to the NSX “integration
bridge”. There, the second lookup matches the inner packet, figures
out that firewall connection tracking is needed and the appropriate
“zone” to ensure separation between different virtual networks, and
passes the packet and zone to the connection tracking module. The
third lookup incorporates the connection tracking state and chooses
the appropriate forwarding action.

We evaluated three scenarios: inter-host VM-to-VM, intra-host
VM-to-VM, and intra-host container-to-container. In each scenario,
we tested OVS with its traditional split user/kernel datapath and
with AF_XDP. We did not test with DPDK because operators are
unlikely to use it in real NSX deployments (see Section 2.2.1). In
each test, we used iperf to send a single flow of bulk TCP packets.
Each packet passed through the OVS datapath pipeline three times,
as described above, which makes it a useful test of the cost of
recirculation and the impact of optimizations such as TSO (TCP
Segmentation Offloading).

Figure 8(a) shows VM-to-VM performance across a pair of hosts,
using Geneve encapsulation across a 10 Gbps link. The first bar
shows that the kernel datapath achieves 2.2 Gbps of throughput
using tap devices. The second and third bars reflect a switch to
AF_XDP, still with a tap device. The second bar shows that using
AF_XDP in an interrupt-driven fashion, which cannot take advan-
tage of any of the optimizations described in Section 3, yields only
1.9 Gbps of performance. When we switch to polling mode and
apply optimizations O1. . .O4, the third bar shows that throughput
rises to about 3 Gbps. The remaining bars show the additional bene-
fits of switching to a vhostuser device: 4.4 Gbps without checksum

 0

 2

 4

 6

 8

 10

 12

 14

checksum
and TSO

interrupt polling no offload checksum
offload

(a) VM−to−VM Cross−Host

T
C

P
 T

h
ro

u
g

h
p

u
t

(G
b

p
s
)

kernel + tap/veth

AF_XDP + tap/veth

AF_XDP + vhostuser

 0

 5

 10

 15

 20

 25

 30

checksum
and TSO

no offload no offload checksum
offload

checksum
and TSO

(a) VM−to−VM Cross−Host

(b) VM−to−VM Within Host

T
C

P
 T

h
ro

u
g

h
p

u
t

(G
b

p
s
)

 0

 10

 20

 30

 40

 50

no offload checksum
and TSO

XDP
program

no offload checksum
offload

checksum
and TSO

(a) VM−to−VM Cross−Host

(b) VM−to−VM Within Host

(c) Container−to−Container Within Host

T
C

P
 T

h
ro

u
g

h
p

u
t

(G
b

p
s
)

Figure 8: TCP throughput in three different scenarios, with patterns
for datapaths and virtual device types, and labels for optimizations
applied.

offload, 6.5 Gbps with checksum offload. We estimated the benefit
of offloading, as described in Section 3.

Figure 8(b) shows VM-to-VM performance within a single host.
The first bar shows about 12 Gbps of throughput using tap devices
with the standard kernel datapath. This is mainly a consequence of
TSO, which allows the kernel to handle 64-kB packets, and check-
sum offloading (within a single host, this means not generating a
checksum at all). The second bar switches to AF_XDP with a tap
device, and the remaining bars are for AF_XDP with vhostuser
devices, which consistently perform better than tap, because vhost-
user avoids context switching between the kernel and userspace (as
discussed in Section 3.3). The three vhostuser bars show the value
of offloading: without offloads, throughput is 3.8 Gbps; offloading
checksum improves performance to 8.4 Gbps; and enabling TSO
achieves 29 Gbps. The final configuration outperforms the kernel
datapath because vhostuser packets do not traverse the userspace
QEMU process to the kernel.

Finally, Figure 8(c) shows container-to-container performance
within a host. All of these use veth virtual interfaces between name-
spaces, as described in Section 3.4. The first two bars in this graph
show that the kernel achieves about 5.9 Gbps throughput with TSO
and checksum offloading disabled and that this grows to 49 Gbps
when they are enabled. The third bar shows about 5.7 Gbps through-
put when we use the new OVS leveraging XDP redirection [41],
following path C in Figure 5. This is slower than in-kernel OVS
because XDP does not yet support checksum offload and TSO [40].
The last three bars show performance if, instead, we send all the
packets to the userspace OVS via AF_XDP then forward them to
the appropriate destination veth, following path A in Figure 5:
4.1 Gbps without offloading, 5.0 Gbps with checksum offloading,
8.0 Gbps with checksum offloading and TSO.

8

Revisiting the Open vSwitch Dataplane Ten Years Later SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

 0

 2

 4

 6

 8

 10

 12

F
o

rw
a

rd
in

g
 R

a
te

(M
p

p
s
)

(a) P2P

1 flow
1000 flows

(b) PVP (c) PCP

 0

 5

 10

Kernel

AF_XDP

DPDK

C
P

U
 U

s
a

g
e

(c
o

re
s
)

Kernel w
ith tap

AF_XDP with tap

AF_XDP with vhostuser

DPDK with vhostuser
Kernel

AF_XDP

DPDK

Figure 9: The forwarding rates and CPU consumption of Physical-
to-Physical (P2P), Physical-to-Virtual-to-Physical (PVP) and
Physical-to-Container-to-Physical (PCP) communication across
datapaths and I/O drivers.

Outcome #1. For VMs, OVS AF_XDP outperforms in-kernel OVS
by 2.4× within a host, rising to about 3× across hosts. For con-
tainer networking, however, in-kernel networking OVS remains
faster than AF_XDP for TCP workloads for now. (We expect up-
coming support for TSO in AF_XDP to reduce or eliminate this
disadvantage.)

5.2 Packet Forwarding Rate
The previous section measured performance of an imitation pro-
duction deployment that included firewalling, tunneling, and other
features. This section instead perform a raw packet forwarding
microbenchmark, measuring the packet forwarding rate and CPU
usage. For these tests we switched to a testbed with two servers
(Xeon E5 2620 v3 12-core 2.4GHz) connected back-to-back through
dual-port 25-Gbps Mellanox Connect-X 6Dx NICs. One server ran
the TRex [11] traffic generator, the other ran OVS with different
datapaths and packet I/O configurations as well as a VM with 2 vC-
PUs and 4 GB memory. We tested three scenarios, all loopback
configurations in which a server receives packets from TRex on
one NIC port, forwards them internally across a scenario-specific
path, and then sends them back to it on the other. We measured
OVS performance with the in-kernel datapath, with AF_XDP, and
with DPDK.

In each case, we measured the maximum lossless packet rate and
the corresponding CPU utilization with minimum-length 64-byte
packets, for 1 flow and 1,000 flows. With 1,000 flows, we assigned
each packet random source and destination IPs out of 1,000 possibil-
ities, which is a worst case scenario for the OVS datapath because it
causes a high miss rate in the OVS caching layer for the OpenFlow
rules specified by the control plane [56].

Figure 9(a) shows the results in a physical-to-physical (P2P) sce-
nario, in which OVS forwards packets directly from one physical
port to another, to measure packet I/O performance with minimum
overhead. For all of the userspace datapath cases, 1,000 flows per-
form worse than a single flow because of the increased flow lookup
overhead. The opposite is true only for the kernel datapath because
of kernel support for receive-side scaling (RSS), which spreads the
flows across multiple CPUs. It is fast, but not efficient: the kernel

path configuration system softirq guest user total
kernel 0.1 9.7 0.1 9.9

P2P DPDK 0.0 0.0 1.0 1.0
AF_XDP 0.1 1.1 0.9 2.1
kernel 1.2 6.0 1.1 0.2 8.5

PVP DPDK + vhost 0.9 0.0 1.0 1.0 2.9
AF_XDP + vhost 0.9 0.8 1.0 1.9 4.6
kernel 0.0 1.5 0.0 1.0

PCP DPDK 0.3 0.5 0.2 1.0
AF_XDP 0.0 1.0 0.0 1.0

Table 4: Detailed CPU use with 1,000 flows, in units of a CPU hyper-
thread. Red vertical bars are scaled with the numbers.

uses almost 8 CPU cores to achieve this performance. DPDK out-
performs AF_XDP in terms of forwarding rate capabilities while
keeping the CPU utilization quite low.

Figure 9(b) shows the results in a physical-virtual-physical (PVP)
scenario, which adds a round trip through a VM to each packet’s
path. For VM connectivity, we tested the kernel with a tap device,
DPDK with vhostuser, and AF_XDP with both possibilities. We
see that vhostuser is always better than tap, with higher packet
rate and lower CPU utilization (explained in Section 3.3). With
vhostuser, AF_XDP is about 30% slower than DPDK. CPU usage
is fixed regardless of the number of flows across all the userspace
options, because all of these cases use preconfigured CPU affinity.
The kernel datapath, on the other hand, uses the RSS feature of NIC
hardware to balance packet processing across all 16 hyperthreads.
In other scenarios this can boost performance, but here it does not
because the kernel does not support packet batching, busy rx/tx
ring polling, batched memory pre-allocation, or other optimizations
incorporated into the OVS userspace datapath [12].

Figure 9(c) reports the physical-container-physical (PCP) sce-
nario, which adds a round trip through a container to each packet’s
path. For container connectivity, we tested the kernel with a veth
device and AF_XDP and DPDK with vhostuser. Here, AF_XDP per-
forms best, both in speed and CPU use, because it processes packets
in-kernel using an XDP program between the physical NIC and the
container, following path C in Figure 5. Compared to DPDK, it
avoids the costly userspace-to-kernel DPDK overhead; compared to
the kernel, the XDP program avoids much of the kernel’s ordinary
overhead.

Table 4 details the 1,000-flow CPU statistics from Figure 9. Each
column reports CPU time in units of a CPU hyperthread. The sys-
tem and softirq columns are host kernel time, with system corre-
sponding to system calls and softirq to packet processing; guest
is all time running inside a VM (blank outside of PVP, the only sce-
nario with a VM); user is time spent in host userspace (including
OVS userspace); and total sums the other columns. In the P2P and
PVP scenarios, the kernel configuration mostly uses kernel CPU
time and the DPDK configuration mostly runs in userspace. The
AF_XDP configuration sits in the middle, with part of its processing
in the kernel’s softirq context for processing the XDP program and
the rest spent in OVS userspace. In return for the minimal extra cost
of in-kernel processing, we obtain the flexibility of extending OVS
features through loading XDP programs into kernel. PVP behavior
is similar to P2P. For PCP performance, all the three configurations
show similar usage, instead.

9

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Tu, et al.

Outcome #2. OVS AF_XDP outperforms the other solutions when
the endpoints are containers. In the other settings, DPDK pro-
vides better performance. However, with more optimizations being
proposed to the kernel community, e.g., optimizations for socket
polling, memory management, zero-copy [5, 13, 14, 33, 37, 63, 64],
we expect that the extra softirq CPU consumption in Table 4 will
drop and as a result, show better CPU utilization than DPDK.

5.3 Latency and Transaction Rate
We conducted two more experiments to understand our design’s
impact on latency, using the same testbed as the previous section.
In each experiment, we ran netperf’s TCP_RR test, which sends a
single byte of data back and forth between a client and a server as
quickly as possible and reports the latency distribution. We tested
OVS in three different configurations:

• Kernel: OVS connecting to VMs with tap devices and to
containers with veth.

• DPDK: OVS with DPDK’s mlx5 driver, connecting to VMs
with vhostuser and containers with the DPDK AF_PACKET
driver.

• AF_XDP: OVS with AF_XDP, connecting to VMs with vhost-
user and containers using vhostuser and containers with an
XDP program.

The first experiment tested inter-host latency. On one host, we
ran the netperf server; on the other, we ran the client in a VM
with 2 virtual CPUs. The top half of Figure 10 shows the 50th, 90th,
and 99th percentiles latencies reported by netperf. The bottom half
shows the same performance data interpreted as transactions per
second. The kernel shows the highest latency, with P50/90/99 la-
tencies of 58/68/94 µs. At 36/38/45 µs, DPDK performs much better
than the kernel because it always runs in polling mode, whereas the
kernel adaptively switches between interrupt and polling modes.
AF_XDP’s 39/41/53 µs latency barely trails DPDK, mainly because
AF_XDP lacks hardware checksum support, as mentioned in sec-
tion 4.

The second experiment tested intra-host latency. On a single host,
we ran the netperf server in one container and the client in another.
Figure 11 reports the results. Here, the kernel and AF_XDP obtain
similar results, with P50/90/99 latency about 15/16/20 µs, but DPDK
is much slower at 81/136/241 µs. Section 3.4 explained the reason:
packets to or from a container must pass through the host TCP/IP
stack, which the OVS in-kernel and AF_XDP implementations can
do cheaply but for which DPDK needs extra user/kernel transitions
and packet data copies.

Outcome #3. OVS with AF_XDP performs about as well as the
better of in-kernel or DPDK for virtual networking both across and
within hosts.

5.4 The cost of XDP processing
Sections 5.1 and 5.2 presented the case where the userspace OVS
datapath processes all the traffic received by the physical interface.
This is because we used a minimal XDP program that we instructed
to push all the data up to the stack. In this section, we reuse the
testbed used in Section 5.1 to understand the cost of adding new
features at the NIC driver level with XDP, by implementing certain

 0

 20

 40

 60

 80

100

L
a

te
n

c
y
 (

u
s
) P50

P90
P99

 0
 5

 10
 15
 20
 25

Kernel AF_XDP DPDK

T
ra

n
s
a

c
ti
o

n
s
/s

 x
 1

0
0

0

Figure 10: Latency and transac-
tion rates between one host and
a VM on another.

 0

 50

100

150

200

L
a

te
n

c
y
 (

u
s
) P50

P90
P99

241

 0

 20

 40

 60

Kernel AF_XDP DPDK

T
ra

n
s
a

c
ti
o

n
s
/s

 x
 1

0
0

0

Figure 11: Latency and transac-
tion rates between containers
within a host.

flow processing logic in P4-generated XDP programs andmeasuring
the performance using a single core.

Table 5 shows the results we obtained under different scenar-
ios. Task A drops all incoming packets without examining them,
which reaches 14 Mpps line rate for a 10 Gbps link. As the XDP
program complexity increases, performance decreases. The basic
L2/L3 parsing in task B drops the rate to 8.1 Mpps as the CPU now
must read the packet (triggering cache misses) and branch through
protocol headers. Task C adds an eBPF map table lookup and slows
processing further, to 7.1 Mpps. Finally, in task D, which modifies
and forwards the packet, the forwarding rate drops further to about
4.7 Mpps.

Outcome #4. Complexity in XDP code reduces performance. Pro-
cessing packets in userspace with AF_XDP isn’t always slower than
processing in XDP.

5.5 Multi-Queue Scaling
Figure 12 shows the effect of using multiple NIC queues on OVS for-
warding performance using the physical-to-physical configuration
adopted in Section 5.2. One server ran the TRex traffic generator,
the other ran OVS with DPDK or AF_XDP packet I/O with 1, 2, 4,
or 6 receive queues and an equal number of PMD threads. We gen-
erated streams of 64 and 1518 packets at 25 Gbps line rate, which is
33 Mpps and 2.1 Mpps, respectively, via back-to-back 25 Gbps Mel-
lanox ConnectX-6Dx NICs. With 1518-byte packets, OVS AF_XDP
coped with 25 Gbps line rate using 6 queues, while in the presence
of 64-byte packets the performance topped out at around 12 Mpps,
even with 6 queues. The DPDK version consistently outperformed
AF_XDP in these cases.

We ran a few micro-benchmarks using Linux perf on the 6
PMD queues and we compared the results between OVS AF_XDP
and DPDK to find out the reasons of such a difference in perfor-
mance. With DPDK, the PMD threads spent most of their CPU
cycles in userspace, processing packets. OVS AF_XDP had two ma-
jor overheads: (1) it suffered from context switches into the kernel
to transmit packets, and (2) it had to calculate rxhash, a hash value
of the packet 5-tuple used for RSS (Receive Side Scaling) as there is
no API for XDP to access the hardware offload features (yet [39]).
Furthermore, the core utilization for DPDK is more efficient, as
already mentioned in Table 4 P2P result.

Outcome #5. AF_XDP does not yet provide the performance of
DPDK but it is mature enough to saturate 25 Gbps with large pack-
ets.

10

Revisiting the Open vSwitch Dataplane Ten Years Later SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

XDP Processing Task Rate
A: Drop only. 14 Mpps
B: Parse Eth/IPv4 hdr and drop. 8.1 Mpps
C: Parse Eth/IPv4 hdr, lookup in L2 table, and drop. 7.1 Mpps
D: Parse Eth/IPv4 hdr, swap src/dst MAC, and fwd. 4.7 Mpps

Table 5: Single-core XDP processing rates for different tasks.

 0

 5

 10

 15

 20

 25

 30

1−Queue 2−Queues 4−Queues 6−Queues

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

AF_XDP−64B
AF_XDP−1518B

DPDK−64B
DPDK−1518B

Figure 12: Throughput usingmultiple queues and cores of Physical-
to-Physical (P2P) test using 25 Gbps network card.

6 LESSONS LEARNED
We have spent two years working on migrating the OVS in-kernel
datapath to the one presented in this paper. This section discusses
the lessons we learned during this process.

✔ Reduced risk. A kernel module is a huge source of risk because
any bug can crash the entire host and all the software running
on it, whereas a bug in OVS with AF_XDP only crashes the OVS
process, which automatically restarts. The reduction of risk has
other benefits: users of AF_XDP will not lose enterprise Linux
support from Red Hat or another vendor due to loading an out-
of-tree kernel module, and production system admins might be
more willing to deploy OVS and experiment with new versions and
features.

✔ Easier deployment. Building and validating a kernel module
across all the kernel versions where it is needed is difficult. With
AF_XDP, the engineering team does not face this difficulty.

✔ Easier upgrading and patching. Upgrading or patching the
in-kernel OVS dataplane required reloading the kernel module and
rebooting the entire system, but an AF_XDP deployment only needs
to restart OVS.

✔ Easier development. For SDN research or playing with OVS,
the need to modify, compile, and load the kernel module makes
development much harder, especially since it often means crashing
and rebooting due to a bug. Testing and deploying in production
is difficult too. Thanks to the lower difficulty level, we have seen
increased interest in understanding new potential features that
can be added at the datapath layer. This is the case for SIMD opti-
mizations [75] using Intel AVX512 instructions to accelerate packet
processing, and OVS-CD [27] that implements a better flow classi-
fication algorithm.

✔ Easier troubleshooting.Most of the traffic deployed in cloud
data centers is tunneled and stateful. NSX usually programs tens of
thousands of OpenFlow rules on each host running OVS bridges,
with Geneve tunnel and connection tracking enabled. This compli-
cated setup makes the verification of network configuration a very
hard task. The userspace datapath makes troubleshooting easier.

For example, a past bug in Geneve protocol parser [38], with an
in-kernel datapath, might have triggered a null-pointer dereference
that would crash the entire system. Now, such a bug will trigger
only the health monitoring daemon to auto-restart OVS and create
a core dump for root cause analysis.

✔ Easier packaging and validation. Every Linux kernel includes
AF_XDP. OVS with AF_XDP does not need tight coordination with
Linux kernel versions or DPDK versions. OVS today also integrates
with several static and dynamic code analysis tools, such as Valgrind,
Coverity, Clang memory/address sanitizers. The user/kernel split
design requires running these analyses separately for the userspace
and the kernel module. Furthermore, today, only a small portion of
code is analyzed because most of the public Continuous Integration,
Continuous Delivery (CI/CD) systems, e.g., Travis CI and Github
Actions, don’t support out-of-tree kernel module due to security
concerns. This is because they do not provide root privileges that
are needed to load kernel modules. The new OVS, being mainly a
userspace process, fits better in the CI/CD pipeline resulting in a
more robust release.

✔Abetter cross-platform design.Customers of NSX sometimes
run less-popular Linux distributions, such as IBM LinuxONE, Oracle
Linux, Citrix XenServer, or deploy a kernel with customized security
enhancement patches [51]. Any of these might change the kernel’s
internal behavior and break the OVS kernel module at compilation
or loading time [80]. Our current userspaceOVS datapathminimally
depends on the operating system kernel, which makes porting to
multiple platforms easier.

✗ Some features must be reimplemented. In-kernel OVS takes
advantage of features of the Linux network stack such as its con-
nection tracking firewall, NAT, and tunnel encapsulations. OVS
had to reimplement these in userspace. Traffic shaping and policing
is still missing, so we currently use the OpenFlow meter action to
support rate limiting, which is not fully equivalent. We are working
on implementing better QoS features.

✗ AF_XDP is not yet available for Windows. OVS supports
Windows through its own Windows-specific kernel driver and in
userspace via Winsock. Given that Microsoft recently announces
its eBPF for Windows project [45], using the uBPF [34] as JIT com-
piler and PREVAIL verifier [2], we hope that our work encourages
Microsoft to add an AF_XDP-like means to pass packets between
userspace and the kernel.

✗ AF_XDP is not always the fastest option—yet. OVS with
AF_XDP and vhostuser interfaces is the fastest choice for applica-
tions inside VMs, and with XDP redirection it is also the fastest
option for container-to-container UDP workloads. However, in-
kernel OVS still outperforms OVS with AF_XDP for container-to-
container TCP workloads. We expect this to change when TSO
support becomes available for AF_XDP.

7 RELATEDWORK
Several approaches have been proposed to solve the maintenance
and extensibility burdens of the OVS Linux kernel datapath. In
Section 2.2.2, we discussed the use of eBPF to allow for extensibility

11

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Tu, et al.

without requiring upstream Linux support. The possibility to enable
new features using eBPF has also been demonstrated [54], which is
compatible with a variety of OSes, e.g., VMware ESX, Linux KVM.
However, the performance penalties caused by eBPF’s in-kernel
virtual machine outweigh its benefits [66, 72].

Performance and extensibility could be obtained by coupling
DPDK with high-level programming languages such as P4. This is
the case of PISCES [59], which extends OVS with the support of
P4 language. Unfortunately, here the DPDK backend creates the
compatibility issues discussed in Section 2.2.1, making this approach
not appealing for real deployments. The same issue can be found in
other proposals that fully bypass the kernel, such as Vector Packet
Processing (VPP) [4], which recently has started to explore the
possibility to support AF_XDP. This is also the case of Oko [10]
that proposes to extend the OpenFlow protocol and allows for
stateful filtering functionalities to be executed in userspace through
an eBPF virtual machine.

Virtual Filtering Platform (VFP) [24] is the virtual switch for
Azure SDN platform. VFP is tightly integrated with the Windows
kernel to closely interact with the host network stacks. We assume
VFP has similar issues as using OVS’s kernel datapath in Linux
environment. Finally, Snap [42] mentioned similar productivity
and performance issue of in-kernel networking stack and proposes
microkernel-like userspace networking system. Unlike Snap which
bypasses the kernel and develops its own transport layer, our work
focus on virtual switch and better integration and compatibility
with Linux kernel community.

8 CONCLUSION
This paper shared our experience in supporting and running OVS,
a state-of-the-art software adopted in cloud data center environ-
ments. Having the OVS datapath tightly integrated with the Linux
kernel brought several drawbacks: (1) Features in OVS are limited
by what Linux developers will accept in principle and then in im-
plementation; (2) OVS upgrades or bug fixes that affect the kernel
module can require updating the kernel and rebooting production
systems; (3) Conventional in-kernel packet processing is now much
slower than newer options.

We presented the evolution of the OVS dataplane alongside
the techniques we employed to overcome the drawbacks of the
previous implementations. The new OVS leverages recent advances
in Linux networking, such as AF_XDP to quickly forward packets
to userspace as soon as they reach the NIC driver.

Beside demonstrating comparable performance to OVS with
DPDK, the solution proposed in this paper also dramatically re-
duces the efforts needed for validating new versions while making
troubleshooting easier. The new code is already merged into the
mainstream OVS repository.

ACKNOWLEDGMENTS
We would like to thank our shepherd Yashar Ganjali and the anoni-
mous reviewers. Also, the many people contributing to the Open
vSwitch community, providing directions to this work, and review-
ing and evaluating its performance, including: Sujata Banerjee, Jes-
per Dangaard Brouer, Mihai Budiu, Eelco Chaudron, Magnus Karls-
son, Niaz Khan, Toshiaki Makita, Ilya Maximets, David S. Miller,

Yifeng Sun, and Björn Töpel. This work is partially supported by
the UK’s EPSRC under the projects NEAT (EP/T007206/1).

REFERENCES
[1] 6Wind. 2020. 6Wind Datacenter Networking. https://www.6wind.com/products/

solutions/data-center-networking/.
[2] PREVAIL: a Polynomial-Runtime EBPF Verifier using an Abstract Interpreta-

tion Layer. 2021. uBPF. https://github.com/vbpf/ebpf-verifier.
[3] Ariel Adam and Amnon Ilan. 2019. How vhost-user came into being: Virtio-

networking and DPDK. https://www.redhat.com/en/blog/how-vhost-user-came-
being-virtio-networking-and-dpdk.

[4] David Barach, Leonardo Linguaglossa, Damjan Marion, Pierre Pfister, Salvatore
Pontarelli, and Dario Rossi. 2018. High-Speed Software Data Plane via Vectorized
Packet Processing. In Communications Magazine, Volume: 56, Issue: 12. IEEE.

[5] Lorenzo Bianconi. 2020. Introduce support for XDP programs in CPUMAP.
https://lwn.net/Articles/826114/.

[6] Thomas Bittman, Philip Dawson, and Michael Warrilow. 2016. Gartner Magic
Quadrant for x86 Server Virtualization Infrastructure. In Gartner Research.

[7] Brenden Blanco, Yonghong Song, et al. 2016. BCC - Tools for BPF-based Linux
IO analysis, networking, monitoring, and more. https://github.com/iovisor/bcc/.

[8] Jesper Dangaard Brouer. 2016. XDP âĂŞ eXpress Data Path, Intro and future
use-cases. http://people.netfilter.org/hawk/presentations/xdp2016/xdp_intro_
and_use_cases_sep2016.pdf.

[9] Mihai Budiu. 2015. Compiling P4 to eBPF. https://github.com/iovisor/bcc/tree/
master/src/cc/frontends/p4.

[10] Paul Chaignon, Kahina Lazri, Jérôme François, Thibault Delmas, and Olivier
Festor. 2018. Oko: Extending Open vSwitch with stateful filters. In Symposium
on SDN Research (SOSR). ACM.

[11] Cisco Inc. [n.d.]. TRex: Realistic Traffic Generator. https://trex-tgn.cisco.com/.
[12] Jonathan Corbet. 2015. Improving Linux networking performance. https://lwn.

net/Articles/629155/.
[13] Jonathan Corbet. 2018. Accelerating networking with AF_XDP. https://lwn.net/

Articles/750845/.
[14] Jonathan Corbet. 2020. A medley of performance-related BPF patches. https:

//lwn.net/Articles/808503/.
[15] Linux Networking Documentation. 2020. AF_XDP: XDP_SKB and XDP_DRV

Modes. https://www.kernel.org/doc/html/v4.18/networking/af_xdp.html.
[16] DPDK. 2020. AF_XDP Poll Mode Driver. https://doc.dpdk.org/guides-20.05/nics/

af_xdp.html.
[17] DPDK Community. 2018. DPDK - DataPlane Development Kit. http://www.dpdk.

org/.
[18] DPDK Guide. [n.d.]. DPDK Tools User Guides. https://doc.dpdk.org/guides/

testpmd_app_ug/.
[19] DPDK Guide. [n.d.]. Testpmd Application User Guide. http://fast.dpdk.org/doc/

pdf-guides-18.08/tools-18.08.pdf.
[20] DPDK Guide. 2018. Virtio for Container Networking. https://doc.dpdk.org/

guides/howto/virtio_user_for_container_networking.html.
[21] Ericsson. 2020. Cloud SDN. https://www.ericsson.com/en/portfolio/digital-

services/cloud-infrastructure/cloud-sdn.
[22] Julia Evans. 2019. Writing eBPF tracing tools in Rust. https://jvns.ca/blog/2018/

02/05/rust-bcc/.
[23] F-Stack. 2019. User Space Network Development Kit. http://www.f-stack.org/.
[24] Daniel Firestone. 2017. VFP: A Virtual Switch Platform for Host SDN in the

Public Cloud. In Networked Systems Design and Implementation (NSDI). USENIX.
[25] Matt Fleming. 2017. A thorough introduction to eBPF. https://lwn.net/Articles/

740157/.
[26] Linux Foundation. 2020. Open vSwitch upstream repository. https://github.com/

openvswitch/ovs.
[27] Sameh Gobriel and Charlie Tai. 2017. OVS-CD: Optimizing Flow Classification

for OVS using the DPDK Membership Library. https://www.openvswitch.org/
support/ovscon2017/.

[28] DPDK Guide. 2019. Mbuf Library. https://static.sched.com/hosted_files/
envoyconna18/e0/envoycon_dpdkvn.pdf.

[29] Stefan Hajnoczi. 2011. QEMU Internals: vhost architecture. http://blog.vmsplice.
net/2011/09/qemu-internals-vhost-architecture.html.

[30] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, and Sylvia
Ratnasamy. 2015. SoftNIC: A software NIC to augment hardware. EECS Depart-
ment, University of California, Berkeley, Tech. Rep. UCB/EECS-2015-155 (2015).

[31] MarkHaranas. 2019. Pat Gelsinger: Cisco ACI ‘Bicycle’Will NeverMatch VMware
NSX ‘Lamborghini’. https://www.crn.com/news/networking/pat-gelsinger-cisco-
aci-bicycle-will-never-match-vmware-nsx-lamborghini-.

[32] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John
Fastabend, Tom Herbert, David Ahern, and David Miller. 2018. The EXpress
Data Path: Fast Programmable Packet Processing in the Operating System Kernel.
In Conference on emerging Networking EXperiments and Technologies (CoNEXT).
ACM.

12

Revisiting the Open vSwitch Dataplane Ten Years Later SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

[33] Magnus Karlsson and Björn Töpel. 2018. The path to DPDK speeds for AF XDP.
In Linux Plumbers Conference.

[34] Rich Lane, Paul Chaignon, et al. 2021. uBPF. https://github.com/iovisor/ubpf.
[35] LF Projects. 2018. Tungsten Fabric Architecture. https://tungstenfabric.github.

io/website/Tungsten-Fabric-Architecture.html.
[36] Linux bridge 2021. Linux bridge. https://wiki.linuxfoundation.org/networking/

bridge.
[37] Hangbin Liu. 2020. xdp: add dev map multicast support. https://lwn.net/Articles/

817582/.
[38] Alan Maguire. 2019. OVS iptunnel bug. https://github.com/openvswitch/ovs/

commit/902c5ffd3360b05ad344f7f4f5ee0301ae331a5.
[39] Saeed Mahameed. 2020. XDP meta-data Acceleration. https://netdevconf.info/

0x14/session.html?workshop-XDP.
[40] Saeed Mahameed and et al. 2020. Linux NetDev 0x14: XDP Workshop. https:

//netdevconf.info/0x14/session.html?workshop-XDP.
[41] Toshiaki Makita and William Tu. 2020. Linux NetDev 0x14: Fast OVS Datapath

with XDP. https://netdevconf.info/0x14/session.html?talk-fast-OVS-data-path-
with-XDP.

[42] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer,
Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C Evans, Steve
Gribble, et al. 2019. Snap: a microkernel approach to host networking. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles. 399–413.

[43] John McNamara. 2017. API ABI Stability and LTS: Current state and Future. In
DPDK Summit Userspace.

[44] Microsoft. 2020. Hyper-V Technology Overview. https://docs.microsoft.com/en-
us/windows-server/virtualization/hyper-v/hyper-v-technology-overview.

[45] Microsoft. 2021. eBPF for Windows. https://github.com/Microsoft/ebpf-for-
windows.

[46] David Miller. 2015. net: Add STT support. https://marc.info/?l=linux-netdev&
m=142275484322111&w=2.

[47] David S. Miller. 2012. Removing the Linux Routing Cache. http://vger.kernel.org/
~davem/columbia2012.pdf.

[48] David S. Miller. 2016. Fast Programmable Networks & Encapsulated Protocols.
https://netdevconf.info/1.2/session.html?david-miller-keynote.

[49] Paul Moore. 2017. Generic Netlink. https://lwn.net/Articles/208755/.
[50] Digital Ocean. 2020. OVS in the Cloud. http://www.openvswitch.org/support/

ovscon2019/.
[51] Open Source Security, Inc. 2020. grsecurity. https://grsecurity.net/.
[52] OVS. 2020. Releases: Q: Are all features available with all datapaths? https:

//docs.openvswitch.org/en/latest/faq/releases/.
[53] OVS Community. 2018. Open vSwitch with DPDK. http://docs.openvswitch.org/

en/latest/intro/install/dpdk/.
[54] Justin Pettit, Ben Pfaff, Joe Stringer, Cheng-Chun Tu, Brenden Blanco, and Alex

Tessmer. 2018. Bringing PlatformHarmony to VMware NSX. In SIGOPS Operating
Systems Review, Volume: 52, Issue: 1. ACM.

[55] Ben Pfaff. 2011. Open vSwitch datapath developer documentation.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/
Documentation/networking/openvswitch.rst.

[56] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J. Jackson, Andy Zhou, Jarno Ra-
jahalme, Jesse Gross, Alex Wang, Jonathan Stringer, Pravin Shelar, Keith Amidon,
and Martín Casado. 2015. The Design and Implementation of Open VSwitch. In
Networked Systems Design and Implementation (NSDI). USENIX.

[57] Greg Rose. 2018. compat: Add ipv6 GRE and IPV6 Tunneling. https://github.com/
openvswitch/ovs/commit/c387d8177f20.

[58] Gregory Rose. 2020. Question about supporting the OVS out-of-tree kernel
drivers. https://mail.openvswitch.org/pipermail/ovs-dev/2020-December/378831.
html.

[59] Muhammad Shahbaz, Sean Choi, Ben Pfaff, Changhoon Kim, Nick Feamster,
Nick McKeown, and Jennifer Rexford. 2016. PISCES: A Programmable, Protocol-
Independent Software Switch. In Special Interest Group on Data Communication
(SIGCOMM). ACM.

[60] Pravin Shelar. 2015. Open vSwitch STT support. https://mail.openvswitch.org/
pipermail/ovs-dev/2015-February/294420.html.

[61] Pravin B Shelar. 2014. openvswitch: Introduce flow mask cache.
https://patchwork.ozlabs.org/project/netdev/patch/1406851074-1680-1-
git-send-email-pshelar@nicira.com/.

[62] Jianfeng Tan, Cunming Liang, Huawei Xie, Qian Xu, Jiayu Hu, Heqing Zhu, and
Yuanhan Liu. 2017. VIRTIO-USER: A new versatile channel for kernel-bypass
networks. In Proceedings of the Workshop on Kernel-Bypass Networks. 13–18.

[63] Björn Töpel. 2020. Introduce AF_XDP buffer allocation API. https://lwn.net/
Articles/821115/.

[64] Björn Töpel. 2020. Introduce preferred busy-polling. https://lwn.net/Articles/
837010/.

[65] Linus Torvalds. 2005. GCC versus kernel stability. https://yarchive.net/comp/
linux/gcc_vs_kernel_stability.html.

[66] Cheng-Chun Tu, Joe Stringer, and Justin Pettit. 2017. Building an extensible
Open vSwitch datapath. In SIGOPS Operating Systems Review, Volume: 51, Issue: 1.
ACM.

[67] William Tu. 2018. AF_XDP support for veth. https://patchwork.ozlabs.org/cover/
1015775/.

[68] William Tu. 2018. openvswitch: add erspan version I and II sup-
port. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/
?id=fc1372f89ffe.

[69] William Tu and Greg Rose. 2018. ERSPAN Support for Linux, Linux Plumber
Conference. http://vger.kernel.org/lpc_net2018_talks/erspan-linux.pdf.

[70] William Tu, Fabian Ruffy, and Mihai Budiu. 2018. Linux Network Programming
with P4. In Linux Plumber Conference.

[71] William Tu and Alexei Starovoitov. 2018. [RFC PATCH 00/11] OVS eBPF datapath.
https://lists.iovisor.org/g/iovisor-dev/topic/22656941.

[72] William Tu, Joe Stringer, Yifeng Sun Sun, and Yi-Hung Wei. 2018. Bringing the
Power of eBPF to Open vSwitch. In Linux Plumber Conference.

[73] William Tu, Yi-Hung Wei, and Ilya Maximets. 2020. Open vSwitch with AF_XDP.
https://docs.openvswitch.org/en/latest/intro/install/afxdp/.

[74] Asanga Udugama. 2006. Manipulating the networking environment using RT-
NETLINK. Linux Journal 145 (2006).

[75] Harry van Haaren. 2018. Applying SIMD Optimizations to the OVS Datapath.
https://www.openvswitch.org/support/ovscon2018/5/1355-van-haaren.pdf.

[76] VMware. 2020. Update to VMwareâĂŹs per-CPU Pricing Model.
https://www.vmware.com/company/news/updates/cpu-pricing-model-
update-feb-2020.html.

[77] VMware. 2020. VMware NSX Data Center. https://www.vmware.com/products/
nsx.html.

[78] Peter P. Waskiewicz Jr. and Neerav Parikh. 2018. Accelerating XDP Programs
Using HW-based Hints. http://vger.kernel.org/lpc_net2018_talks/xdp-plumbers-
2018.pdf.

[79] Yi-Hung Wei. 2018. datapath: compat: Backports nf_conncount. https://github.
com/openvswitch/ovs/commit/744964326f6c.

[80] Yi-Hung Wei. 2018. datapath: compat: Fix compilation issue with grsecurity
patch. https://github.com/openvswitch/ovs/commit/1556fcca6766.

[81] Yi Yang. 2019. OVS DPDK issues in Openstack and Kubernetes and Solutions.
http://www.openvswitch.org/support/ovscon2019/.

13

