
Bourne Shell Programming in One Hour

Ben Pfaff <pfaffben@msu.edu>

1 Aug 1999

1 Introduction

Programming with the Bourne shell is similar to pro-
gramming in a conventional language. If you’ve ever
written code in C or Pascal, or even BASIC or FOR-
TRAN, you’ll recognize many common features. For
instance, the shell has variables, conditional and loop-
ing constructs, functions, and more.

Shell programming is also different from conven-
tional programming languages. For example, the
shell itself doesn’t provide much useful functionality;
instead, most work must be done by invoking external
programs. As a result, the shell has powerful features
for using programs together in sequence to get work
done.

This article examines the features of the POSIX
shell, more commonly known as the Bourne shell.
The most common Bourne shell implementation on
GNU/Linux systems is bash, the “Bourne again
shell.” bash incorporates several extensions to the
standard Bourne functionality; none of these will be
explored by this article. For a POSIX-compliant
Bourne shell without extensions, I recommend ash.

This article is by no means comprehensive. It just
skims the surface of many shell features. I recom-
mend referring to a good reference book or manpage
for more details on shell programming.

2 Shell command basics

You should already know how shell commands work
at a basic level. To start out, the command line you
typed is divided up into words. The first word is used
as the command name, which is either understood by
the shell itself, or used as the name of an external
program to run. In either case, the rest of the words
are used as arguments to the command.

This basic description is fairly accurate, but there
is a little more going on behind the scenes. The fol-
lowing aims to provide a brief explanation of what

goes on.

2.1 Word expansion

Before the shell executes a command, it performs
“word expansion,” which is a kind of macro process-
ing. Word expansion has a number of steps, named
in the list below. The steps are performed in order.

1. All of the following occur at the same time in a
single pass across the line.

• Variable substitution.

• Arithmetic expansion.

• Tilde expansion.

• Command substitution.

2. Field splitting.

3. Filename expansion.

4. Quote removal.

Each step is explained in more detail below.

2.1.1 Variable substitution

The shell has variables that you can set. To set a
shell variable, use the syntax name=value . Note that
there may not be whitespace on either side of the
equals sign. Names of variables defined this way may
contain letters, digits, and underscore and may not
begin with a digit.

To reference the value of a variable, use the syn-
tax $name or ${name}. The variable reference is ex-
panded like a macro into the command contents.

There are more powerful ways to reference a vari-
able; see Fig. 1 on page 2 for a few of the more useful.

The shell has a number of built-in variables. See
Fig. 2 on page 2 for some of the most commonly used.

1

${name:-value} If name is an existing variable with
a nonempty value, then its value is used. Other-
wise, value is used as a default value.

${name:=value} If name is an existing variable with
a nonempty value, then its value is used. Other-
wise, value is used as a default value and variable
name is assigned the specified value.

${name:?[message]} If name is an existing variable
with a nonempty value, then its value is used.
Otherwise, message is output on standard error
and the shell program stops execution. If mes-
sage is not given then a default error message is
used.

Figure 1: Useful variable references.

$0 The name under which this shell program was in-
voked.

$1 . . . $9 Command-line arguments passed to the
shell program, numbered from left to right.

$* All the command-line arguments.

$# The number of command-line arguments.

$? The exit status of the last command executed.
Typically, programs return an exit status of zero
on successful execution, nonzero otherwise.

$$ The process ID number of the executing shell.

Figure 2: Commonly used built-in shell variables.

2.1.2 Arithmetic expansion

Constructions of the form $((expression)) are
treated as arithmetic expressions. First, expression
is subjected to variable subsitution, command sub-
stitution, and quote removal. The result is treated as
an arithmetic expression and evaluated. The entire
construction is replaced by the value of the result.

For example:

$ a=1
$ a=$(($a + 1))
$ echo $a
2

2.1.3 Tilde expansion

‘~/’ at the beginning of a word is replaced by the
value of the HOME variable, which is usually the cur-
rently logged-in user’s home directory.

The syntax ~username/ at the beginning of a word
is replaced by the specified user’s home directory.

You can disable this treatment by quoting the tilde
(~); see section 2.2 on page 3 for more information on
quoting.

2.1.4 Command substitution

Sometimes you want to execute a command and use
its output as an argument for another command. For
instance, you might want to view detailed informa-
tion on all the files with a .c extension under the
current directory. If you know about the xargs com-
mand, quoting, and pipes, you could do it this way:

find . -name *.c -print | xargs ls -l

With command substituion, invoking xargs isn’t
necessary:1

ls -l ‘find . -name *.c -print‘

In command substitution, backquotes are paired
up and their contents are treated as shell commands,
which are run in a subshell. The output of the com-
mand is collected and substituted for the backquotes
and their contents.

1However, if there are many, many .c files under the current
directory, the first form is preferable because there is a (system-
dependent) limit on the maximum number of arguments that
can be passed to a single command, which the first form will
avoid hitting.

2

2.1.5 Field splitting

After the substitutions above are performed, the
shell scans the substitutions’ results breaks them into
words at whitespace (mostly spaces and tabs). Quot-
ing (see below) can be used to prevent this.

2.1.6 Filename expansion

After field splitting, each word that contains wildcard
characters is expanded in the usual way. For instance,
a is replaced by all files in the current directory
that have an “a” in their name. Quoting (see below)
can be used to prevent filename expansion.

2.2 Quoting

Sometimes you want to disable some of the shell word
expansion mechanisms above, or you want to group
what would normally be multiple space-separated
words into a single “word.” Quoting takes care of
both of these.

Quoting can be done with single quotes (’) or dou-
ble quotes ("):

• When single quotes surround text, the contents
are treated as a single literal word. No changes
at all are made. Single quotes cannot be included
in a word surrounded by single quotes.

• When double quotes surround text, the contents
are subjected to variable substitution, arithmetic
substitution, and command substitution. In ad-
dition, the sequences \$, \‘, \", and \\ are re-
placed by their second character.

In addition, single characters can be quoted by pre-
ceding them with a backslash (\).

2.3 Pipelines and redirections

Pipelines are a key shell feature. They allow the out-
put of one program to be used as the input for an-
other. For instance,

find . -print | cut -b 3- | sort

causes the output of find to be the input for cut,
whose output in turn supplies the input for sort.

You can also redirect input and output to a file
with the redirection operators. The most common
redirections are <, which redirects input, and >, which
redirects output. See Fig. 3 on page 3 for a more
complete list of redirections.

>file Redirect output to file. If file exists then its
contents are truncated.

<file Supply input from file.

>>file Append output to file.

2>&1 Redirect error output to standard output. Usu-
ally seen in a construction like ‘>/dev/null
2>&1’ which causes both regular and error out-
put to be redirected to /dev/null.

Figure 3: Common types of redirection.

3 Intermediate shell program-
ming

3.1 The first line

A shell program should begin with a line like the one
below.

#! /bin/sh

This line, which must be the first one in the file,
means different things to the shell and to the kernel:

• To the shell, the octothorpe (#) character at the
beginning of the line tells it that the line is a
comment, which it ignores.

• To the kernel, the special combination #!2, called
sharp-bang, means that the file is a special exe-
cutable to be interpreted by the program whose
name appears on the line.

You can pass a single command-line argument to
the shell by putting it after the shell’s name. Many
kernels truncate the sharp-bang line after the first 32
characters3, so don’t get too fancy.

To make full use of this feature, shell programs
should have their executable bit set. You can do this
from the shell prompt with the command “chmod a+x
filename” or similar.

Shell programs should never be setuid or setgid.
Such programs are a security risk with most Unix
kernels, including Linux.

2On some kernels the entire sequence #! / is used. For
this reason, never omit the space between ! and /.

3The Linux limit is approximately 128.

3

3.2 Command return values

Every command returns a value between 0 and 255.
This is separate from any output produced. The shell
interprets a return value of zero as success and a re-
turn value of nonzero as failure.

This return value is used by several shell constructs
described below.

The character ! can be used as a command prefix
to reverse the sense of a command’s result; i.e., a
nonzero return value is interpreted as zero, and vice
versa.

3.3 Lists

Lists of commands can be formed with the && and ||
operators:

• When a pair of commands is separated by &&,
the first command is executed. If the command
is successful (returns a zero result), the second
command is executed.

• When a pair of commands is separated by ||,
the first command is executed. If the command
is unsuccessful (returns a zero result), the second
command is executed.

The value of a list is the value of the last command
executed.

3.4 Grouping commands

Commands may be grouped together using the fol-
lowing syntaxes:

(commands...) Executes the specified commands in
a subshell. Commands executed in this way, such
as variable assignments, won’t affect the current
shell.

{commands...} Executes commands under the cur-
rent shell. No subshell is invoked.

3.5 Testing conditions

Besides the list operators above, conditions can be
tested with the if command, which has the following
syntax:

if condition

then commands...
[elif condition

then commands...]...
[else commands...
fi

If the first condition, which may be any command,
is successful, then the corresponding commands are
executed. Otherwise, each condition on the elif
clauses is tested in turn, and if any is successful, then
its commands are executed. If none of the condi-
tions is met, then the else clause’s commands are
executed, if any.

For example:

$ echo
$ if test $? = 0
> then echo ’Success!’
> else echo ’Failure!’
> fi
Success!
$ asdf
asdf: not found
$ if test $? = 0
> then echo ’Success!’
> else echo ’Failure!’
> fi
Failure!

3.6 Repeating an action conditionally

The while command is used to repeat an action as
long as a condition is true. It has the following syn-
tax:

while condition

do commands...
done

When a while command is executed, the condition
is first executed. If it is successful, then the com-
mands are executed, then it starts over with another
test of the condition, and so on.

3.7 Iterating over a set of words

To repeat an action for each word in a set, use the
for command, which has the following syntax:

for variable in words...
do commands...
done

4

The commands specified are performed for each
word in words in the order given. The example be-
low shows how this could be used, along with sed, to
rename each file in the current directory whose name
ends in .x to the same name but ending in .y.

$ ls
a.x b.x c.x d
$ for d in *.x
> do mv $d ‘echo $d | sed -e ’s/\.x$/.y/;’‘
> done
$ ls
a.y b.y c.y d

3.8 Selecting one of several alterna-
tives

The case statement can be used to select one alter-
native from several using wildcard pattern matching.
It has the following syntax:

case word in
pattern) commands...;;
...
esac

word is compared to each pattern in turn. The
commands corresponding to the first matching pat-
tern are executed. Multiple patterns may be specified
for a single set of commands by separating the pat-
terns with a vertical bar (|).

Each pattern may use shell wildcards for matching.
To match all patterns as a final alternative, use the
generic wildcard *, which matches any string.

3.9 Shell functions

You can define your own shell functions using a func-
tion definition command, which has the following syn-
tax:

name () {
commands...
}

After defining a function, it may be executed like
any other command. Arguments are passed to the
function in the built-in variables $0 . . . $9. Com-
mands inside functions have the same syntax as those
outside.

4 Built-in shell commands

The commands described below are built into the
shell. This list is not comprehensive, but it describes
the commands that are most important for shell pro-
gramming.

4.1 :

This command does nothing and returns a value of
zero. It is used as a placeholder.

4.2 cd directory

Changes the current working directory to directory.

4.3 exec program arguments...

Replaces the shell by the program (which must not
be built-in), passing it the given arguments. program
replaces the shell rather than running as a subprocess;
control will never return to this shell.

4.4 exit value

Exits the shell, returning the specified value to the
program that invoked it. exit 0 is often the last
line of a shell script. If a shell program doesn’t end
with an explicit exit command, it returns the value
returned by the last command that it executed.

4.5 export names...

By default, shell variables are limited to the current
shell. But when export is applied to a variable, it
is passed in the environment to programs that are
executed by the shell, including subshells.

4.6 getopts optstring name

Can be used to parse command-line arguments to a
shell script. Refer to a shell reference manual for
details.

4.7 read [-p prompt] variables...

prompt is printed if given. Then a line is read from
the shell’s input. The line is split into words, and the
words are assigned to the specified variables from left
to right. If there are more words than variables, then
all the remaining words, along with the whitespace

5

that separates them, is assigned to the last variable
in variables.

4.8 set

The set command can be used to modify the shell’s
execution options and set the values of the numeric
variables $1 . . . $9. See a shell reference manual for
details.

4.9 shift

Shifts the shell’s built-in numeric variables to the left;
i.e., $2 becomes $1, $3 becomes $2, and so on. The
value of $# is decremented. If there are no (remain-
ing) numeric variables, nothing happens.

5 Useful external commands

Most of what goes on in a shell program is actually
performed by external programs. Some of the most
important are listed below, along with their primary
purposes. To achieve proficiency in shell program-
ming you should learn to use each of these. Unfortu-
nately, describing what each of them do in detail is
far beyond the scope of this article.

Most shells implement at least some of the pro-
grams listed below as internal features.

5.1 Shell utilities

These programs are specifically for the use of shell
programs.

basename Extracts the last component of a file-
name.

dirname Extracts the directory part of a filename.

echo Writes its command-line arguments on stan-
dard output, separated by spaces.

expr Performs mathematical operations.

false Always returns unsuccessfully.

printf Provided formatted output.

pwd Displays the current working directory.

sleep Waits for a specified number of seconds.

test Tests for the existence of files and other file
properties.

true Always returns successfully.

yes Repeatedly writes a string to standard output.

[An alias for the test command.

5.2 Text utilities

These programs are for manipulation of text files.

awk Programming language for text manipulation.

cat Writes files to standard output.

cut Outputs selected columns of a file.

diff Compare text files.

grep Searches files for patterns.

head Outputs the first part of a file.

patch Applies patches produced by diff.

sed Stream EDitor for text manipulation.

sort Sorts lines of text based on specified fields.

tail Outputs the last part of a file.

tr Translates characters.

uniq Removes duplicate lines of text.

wc Counts words.

5.3 File utilities

These programs operate on files.

chgrp Changes the group associated with a file.

chmod Changes a file’s permissions.

chown Changes the owner of a file.

du Calculates disk storage used by a file.

cp Copies files.

find Finds files having specified attributes.

ln Creates links to a file.

ls Lists files in a directory.

mkdir Creates a directory.

mv Moves or renames files.

rm Deletes files.

rmdir Deletes directories.

touch Updates file timestamps.

6

