
Word Processing with GNU/Linux

Part 2: Gluing Together the Pieces

Ben Pfaff <pfaffben@msu.edu>

8 Jan 2000

Contents

1 Introduction 1

2 Graphics 1
2.1 Document processors 1
2.2 Vector-based tools 2

2.2.1 Xfig 2
2.2.2 xcircuit 2
2.2.3 Dia 2

2.3 Pixmap based tools 2
2.3.1 The GIMP 2
2.3.2 xpaint 3
2.3.3 SANE 3

2.4 Document processor specific tools . . . 3
2.4.1 LATEX 3
2.4.2 pic 3

3 Ad-hoc tools 3
3.1 Adding headers and footers 4
3.2 Style guides 4
3.3 Customization 5
3.4 Modifying existing tools 5
3.5 Generating graphics 5

3.5.1 GD 5
3.5.2 The GIMP 6

4 Gluing it all together 6
4.1 Rules 7
4.2 Pattern rules 8
4.3 Suffix rules 8
4.4 Phony targets 8
4.5 Commands in rules 8
4.6 Invoking make 9
4.7 Further information 9

5 Conclusion 9

1 Introduction

In the first part of this series, we discussed the most
common document processors used for word process-
ing in GNU/Linux. In this part, we’ll take a look
at how these programs can be used along with vari-
ous ad-hoc tools to perform complicated, specialized
tasks.

We’ll tackle the subject in the following way:

• First we’ll look at some commonly useful GUI-
and text-based tools for building figures for use
in documents.

• Next, we’ll examine some examples of ad-hoc
methods for processing word processor docu-
ments.

• Finally, we’ll see how Makefiles can be used
to simplify using multiple tools to create doc-
uments.

2 Graphics

The expressiveness of the written word is limited.
Sometimes a graphic or picture will explain a concept
more clearly or expediently. When this happens, it’s
necessary to learn how one’s word processing tools al-
low graphics to be integrated into text. Fortunately,
many common document processors for GNU/Linux
have extensive support for graphics.

The sections below will examine the support for
graphics of each GNU/Linux document processor,
then briefly look at some common tools for creating
graphical material.

2.1 Document processors

TEX has no built-in support for graphics, but both
common document preparation systems do. LATEX

1

can include images in Encapsulated PostScript for-
mat for DVI output or PDF format for PDF out-
put. Texinfo supports inclusion of images in a format
that depends on the output format: Encapsulated
PostScript for DVI output, PDF for PDF output,
text for Info output, and PNG or JPEG for HTML
output.
nroff undoubtedly has provisions for including

graphics, but I can’t figure out what they are. Some-
one enlighten me here?

SGML and XML systems’ support for graphics also
depend on the output format. HTML, Docbook, and
Linuxdoc defer all graphics support to the output for-
mat. Debiandoc does not support graphics at all.

2.2 Vector-based tools

With vector based tools, a graphic is made up of
separate components such as lines, ellipses, rectan-
gles, and so on. Graphics created with such tools can
generally be scaled arbitrarily without losing quality,
since they are not limited to rendering at a particular
resolution.

2.2.1 Xfig

Xfig is a general-purpose vector drawing tool for X11.
It has a very complete list of features, with sup-
port for drawing circles and ellipses, open and closed
curves and polygons, and annotating graphics with
text and pictures provided by the user or drawn from
its included library.

Xfig’s interface is heavily mouse- and menu-based.
Most operations can be performed without using the
keyboard at all.

Files created with Xfig can be exported to a long
list of vector formats, including PostScript, PDF,
LATEX, pic, and a number of bitmap formats such
as GIF, JPEG, and PNG. These translations can be
performed interactively, as well as through the use of
an included scriptable utility.

Xfig is often a good choice for drawing free-form
graphics.

2.2.2 xcircuit

xcircuit is a simple drawing tool for X11 that’s par-
ticularly useful for drawing diagrams and schematics.
Its interface is more keyboard-oriented than is Xfig’s.

For simple tasks, it can be easier and faster to use
xcircuit than Xfig. However, it is less general, with
fewer drawing features. It includes a small library of

circuit elements. It is easy to add your own elements
to the library.

xcircuit’s only output format is PostScript. This
is also its save file format: it can read and interpret
its own PostScript output files. This can sometimes
make it easier to deal with figures since it’s not nec-
essary to go through a separate “export” step.

2.2.3 Dia

Dia is a promising new entrant into the vector-based
tools game. It is gtk-based, with an interface remi-
niscient of the GIMP (see below). It is targeted pri-
marily toward drawing diagrams and flowcharts. Dia
includes a library of predrawn components of various
types.

Dia has the prettiest interface of any of the vector
drawing programs described here. But it is a work
in progress. Dia tends to crash fairly often. Later
versions can be expected to be more reliable.

Dia’s native file format is based on XML. It can
interactively export to PostScript and a few other
formats. It can also be invoked noninteractively to
translate its native format to PostScript, but an X
server is still, inconveniently, required to do so.

2.3 Pixmap based tools

Pixmap based tools deal with rectangular arrays of
pixels. Graphics created with such tools lose qual-
ity as they are scaled up or down. As a result, they
are undesirable in high quality word processing, es-
pecially for documents targeted at multiple media,
such as online and print media. But sometimes they
are unavoidable, i.e., for screen shots. The following
sections briefly describe some of the more commonly
seen pixmap based graphics editing tools.

2.3.1 The GIMP

The GIMP is the most complete pixmap based graph-
ics editing tool for the GNU/Linux operating system.
Its feature set is far too big to fully describe here, and
it continues to grow as time goes on. The GIMP owes
a lot of this flexibility to its plugin-based architecture.

The GIMP’s basic features include support for full-
color, grayscale, and palette-based images and full
layering support with alpha channels (transparency).
It comes with numerous filters and tools for manipu-
lation of images.

The GIMP is based on the gtk widget set (in fact,
it originated the gtk widget set). It has its own native

2

graphics format, but supports dozens of other formats
through plug-ins.

You can find more information about the GIMP on
its website at www.gimp.org.

2.3.2 xpaint

xpaint is a much simpler, and hence less powerful,
graphics editor than the GIMP, but it is also much
smaller. It is a good choice for simple tasks, such as
those that can be largely finished before the GIMP
can finish loading.

xpaint has a friendly, clean interface based on
menus and toolboxes.

2.3.3 SANE

SANE (Scanner Access Now Easy) is a GNU/Linux
interface to all the various graphics acquisition de-
vices used on Unix-like systems. It supports numer-
ous flatbed and hand-held scanners and digital cam-
eras, attached though SCSI, parallel, and USB inter-
faces. SANE supports both local and network scan-
ners.

SANE includes a program for scanning called
xscanimage. Some other programs, such as the
GIMP, have built-in support for SANE.

You can find out more about SANE on its webpage
at http://www.mostang.com/sane.

2.4 Document processor specific tools

LATEX and nroff pic have some features that can
be used for drawing some types of figures without
having to use external tools. If you’re using one of
these document processors, then it’s worth taking a
look at what they offer, as described below.

2.4.1 LATEX

Out of the box, LATEX supports drawing lines, boxes,
arrows, circles, curves, and more, without having to
resort to anything outside the language. With the
pict2e package, you can do even more.

However, to use these features, you pretty much
have to sit down with a piece of graph paper and draw
everything by hand, then start counting out squares
and typing the x-y coordinates of all your picture
elements. If anything ever needs to change, then you
have to carefully adjust all the coordinates.

As a result, LATEX’s drawing features are pretty
hard to use, though it can be done. For complicated

diagrams or those where you’re not sure in advance
exactly what you want the end product to look like,
it’s easier to use a visual tool.

2.4.2 pic

nroff or, more specifically, the pic preprocessor
to nroff, takes a different approach to typesetting
graphics. Instead of requiring the user to specify the
location and size of each graphic element explicitly,
as does LATEX, it allows the user to specify positions
in relative terms and uses default sizes for elements.
(Of course, these defaults can be overridden manu-
ally.) As a result, it’s almost a no-brainer to draw
simple diagrams, and it’s possible to draw more com-
plex ones, too, without excessive trouble.

You might think that using the rather clean pic
language means that you have to use the rather
ghastly nroff language for the rest of your typeset-
ting. That was true at one time. However, the GNU
version of pic also supports output in TEX format
when given a special command-line option. So, you
can include pic figures in your TEX and LATEX doc-
uments as well. (It won’t work with Texinfo.)

Incidentally, pic is one of the better documented
areas of nroff. The GNU pic manpage has an URL
to a pic user manual and reference written by pic’s
designer, Brian Kernighan (also one of the principal
architects of C and UNIX). In addition, the GNU
pic manpage describes its extensions to basic pic
functionality.

3 Ad-hoc tools

More often than not, in constructing a nontrivial doc-
ument, there will be a need for some capability that
is not provided by any pre-built tool. When this hap-
pens, it becomes necessary to build one’s own tools.
This may sound difficult, but after one has done it a
few times it becomes second nature.

These tools are ad-hoc because, typically, they are
specialized to a particular job. They are rarely useful
for other tasks. The reasons behind this are twofold.
First, if the task in question was common, then there
would be an existing tool to do it. Second, typically
the tools built are not flexible enough or well specified
enough to be reapplied.

As a consequence of the specialized tasks that they
perform, it is difficult to make general statements
about ad-hoc document tools. Instead, the follow-
ing sections will give a variety of examples of ad-hoc

3

tools. These examples are taken from the author of
this article’s actual projects. They are not fabricated
in any way, although in some cases they are slightly
simplified to aid exposition.

3.1 Adding headers and footers

When one long document is broken up into multiple
shorter documents, one often wants to add a header
and footer to each of them. Suppose that a user man-
ual written with Texinfo is converted into HTML for-
mat, with one HTML file per section of the Texinfo
document. This is actually done for the GNU web-
page for GNU PSPP with the following command:

texi2html -menu -number -split_node
pspp.texi

However, site policy for the official GNU website
at www.gnu.org requires that each page begin with
a particular header and end with a particular footer.
texi2html doesn’t know how to do this properly. So
I wrote a tool, called mkcanon.pl, that could do the
job when invoked like this:

for d in manual/*.html; do
./mk-canon.pl $d

done

Figure 1 on page 5 shows an outline of the Perl
source to mkcanon.pl.

3.2 Style guides

A style guide is a generalization of the header and
footer case where more of the document’s presenta-
tion style is to be customized, probably in a way that
it can be easily changed or fine-tuned. When this
case comes up, it’s usually easiest to use a general
macro language.

The INTEnD webpage at cscw.msu.edu is a good
example. Each of the pages at this site should have
more or less the same format, and it should be easy
to adjust the format of all the pages at once.

Of course, there are lots of tools specialized for
this task. Most of these are aimed at dynamic con-
tent, which we’re not interested in—the main CSCW
webpage is completely static, so using a dynamic tool
would simply be a waste of processor power. On the
other hand, other tools specialized for webpages tend
to be too simple or too complicated for what we want.

UNIX-like systems come with a simple but pow-
erful macro processor called m4. This is what was

actually used to generate the CSCW webpage, with
commands like the following:

cat template.m4 file.html.m4
| m4 > file.html

The command above feeds the contents of files
template.m4 and file.html.m4 to m4 as input,
and puts the processed output in file.html. File
template.m4 contains a small collection of macro def-
initions, such as the following:

in webmaster Email address of the webmaster.

in headstyle Produces a style used for headlines.

in button Automagically generates a graphical but-
ton with specified text and linked to a specified
webpage (more about this later).

in header Generates the header for the page, in-
cluding a row of graphical buttons for each page
(using in button).

in makenavbar Makes a textual navigation bar
with links to each page, except for this one.

in trailer Generates the trailer for the page, includ-
ing a textual navigator bar as above.

All these helpful macros mean that file.html.m4
can be very simple and flexible. The color scheme of
the entire site, its layout, the button shapes, and so
on, can be adjusted very easily. When a new page
is added to the site, it automatically appears on the
navigation list at the side and the bottom of each
page.

A typical file.html.m4 looks something like this:

in_header([Page Title])
...arbitrary HTML content...
in_trailer

That’s all that’s needed. The template does the
rest.

Incidentally, a similar, but simplified, system of
m4 macros was used to build early versions of the
GLLUG webpage at www.gllug.org. (It might still
be in use, but I am no longer webmaster.)

4

#! /usr/bin/perl -i.bak

$version="0.9";
$date=‘date "+%d %B %Y"‘;
chop $date;
while (<>) {

if (/^<HTML>/) {
print "...SGML DTD declaration...";

} elsif (/^<HEAD>/) {
print "...header comment...";

} elsif (/^<TITLE>/) {
s%</TITLE>% - GNU Project - Free Software Foundation (FSF)</TITLE>%;
print;
print "...<LINK REV> to FSF webmaster...";

} elsif (...) {
...other possibilities elided...

} else {
print;

}
}

Figure 1: Outline of mkcanon.pl source code.

3.3 Customization

To me, it’s amazing how often I have the need to do
some sort of systematic customization of the output
of a tool. For instance, the manual for TeamSCOPE,
a CGI-based package for distributed teams, is writ-
ten in Texinfo format and converted from that into
numerous other formats. In HTML form it is used as
part of TeamSCOPE’s online help. For that purpose,
a few different things have to happen:

1. The headers and trailers output by texi2html
must be removed, since the TeamSCOPE CGI
inserts its own as necessary.

2. Links between pages have to be changed into a
format acceptable to the CGI.

3. Links from headers back to the table of contents
have to be removed, since users found these to
be more confusing than helpful.

Fortunately, this is something that can be done
with a simple Perl script. The actual script used,
called frob, is shown in Figure 2 on page 6.

3.4 Modifying existing tools

TeamSCOPE also uses a modified texi2html to gen-
erate its original .html files before running them

through frob. This modified version translates some
Texinfo constructs into webpages that, for Team
TeamSCOPE’s purposes, look nicer.

Modifying translation tools is a good technique in
general, though it is possible to take it too far. For
instance, modifying TEX’s source code is usually not
a good choice.

3.5 Generating graphics

Sometimes there’s a need to generate lots of relatively
similar graphical images. Graphical buttons and cus-
tomized monthly calendars for webpages are two ex-
amples that I’ve run into myself.

When this comes up, you can choose to fire up the
GIMP and use it manually or through Script-Fu, or
you can choose to write a script to do it for you. The
latter usually turns out to be the better choice.

The following sections examine two different ways
to generate graphics through scripts.

3.5.1 GD

GD is a small but relatively powerful library for draw-
ing color graphics into memory buffers. It offers func-
tions to draw lines, ellipses, curves, text, and other
shapes. It is easy to use and comes with bindings for

5

#! /usr/bin/perl
while (<>) {

m%^<BODY % && last;
}
while (<>) {

m%^</BODY>% && last;
chop;
s%HREF="scope_([a-zA-Z0-9_]*)\.html%HREF="/scope/scope.cgi/help-\1%g;
s%^(<H([0-9])>.*</H\2>)$%$1$3%;
print $_, "\n";

}

Figure 2: Script to frobnicate texi2html output into a format usable by TeamSCOPE.

C and Perl. Older versions supported writing output
in .gif format; newer versions support .png format
(Debian comes with both versions of the library).

As an example of how easy it is to use GD, Figure 3
on page 7 shows GD code in Perl to draw three differ-
ent versions of a button for a webpage, one in a plain
format, one underlined in red to indicate selection,
and one underlined in yellow for mouseovers.

3.5.2 The GIMP

Using “Script-Fu” and other tools, the GIMP can be
set up to automatically generate parameterized im-
ages such as buttons for webpages. However, an X
server is still required for scripted use. In addition,
the GIMP can take a minute or more to load on low-
end systems. These problems make scripting with the
GIMP is difficult.

Fortunately, there exist solutions to both problems.
First, on systems that lack an X server, one can run

the “virtual frame buffer” X server, Xvfb. This is an
X server that does not attach to any actual hardware.
Instead, it maintains a virtual screen image in RAM.
The GIMP is just as happy talking to Xvfb as a real
X server, and for noninteractive use it works just as
well.

The second problem, slow startup time, requires
a more involved solution. The simplest way, using
the GIMP 1.0.x, is to set up the GIMP’s “Script-
Fu” server. This causes a running copy of the GIMP
to listen on a particular network port and execute
requests it receives through that port. Along with
a simple command-line utility to send requests, this
allows the GIMP to be efficiently scripted.

This can all be conveniently done through the use
of an unreleased program called gimpbot, based orig-

inally on code from Script-Fu. A typical invocation
of gimpbot looks like this:

gimpbot "(script-fu-intend-batch-button \
\"Calendar\" \
\"‘pwd‘/btn-Calendar.gif\")"

Contact Ben Pfaff pfaffben@msu.edu for more in-
formation on gimpbot.

(Versions of the GIMP later than 1.0.x might have
better built-in scripting support.)

4 Gluing it all together

You’ve got this document. Your source file runs
through half a dozen preprocessors, passes through
the document processor, and gets postprocessed into
five different formats. Everything’s beautiful, and
you’re happy with the results. You copy it into your
website.

Then someone points out a typo. So you edit the
original document. Then you’ve got to go through all
the translation steps: preprocess, document process-
ing, postprocessing, installing. This is a pain.

The obvious way to automate all this is to write a
shell script to do it for you. Now it’s easy: to redo
everything, just run the shell script.

This shell script idea is a good one, and it’s often
suitable. But it’s not very scalable: if you have a
document that consists of multiple parts, then you’ll
often waste your time waiting for unnecessary pro-
cessing to finish, because only one part changed but
your script regenerates everything, or because you’re
only interested in one of the output formats at the
moment.

6

#! /usr/bin/perl

use GD;

$width = 90;
$height = 20;
$im = new GD::Image($width,$height);

$filename = $ARGV[0];
$string = $ARGV[1];

$cw = 7;
$ch = 13;

$x = $width - 5 - $cw * length ($string);
$y = 2;

$background = $im->colorAllocate(0,0,255);
$im->transparent($background);
$black = $im->colorAllocate(0,0,0);
$white = $im->colorAllocate(255,255,255);
$ul = $im->colorAllocate(242,202,20);

$im->string(gdMediumBoldFont, $x, $y,
$string, $white);

open PLAIN, ">$filename.gif";
print PLAIN $im->gif;
close PLAIN;

$im->filledRectangle($x, $y + $ch,
$x + $cw * length ($string) - 1,
$y + $ch + 1, $ul);

open SELECTED, ">$filename-sel.gif";
print SELECTED $im->gif;
close SELECTED;

$im->colorDeallocate($ul);
$im->colorAllocate(255,0,0);
open FOCUS, ">$filename-focus.gif";
print FOCUS $im->gif;
close FOCUS;

Figure 3: Code using GD to draw three versions of
a graphical button. (Slightly reformatted from the
original to fit within the column.)

This is what Makefiles are good for. A Makefile
specifies the dependencies between files, and make
understands these dependencies. As a result, it only
performs actions that are necessary, saving your time.
Also, it only generates the files that you ask it to, in
case you’re only interested in one output format at
the moment.

Makefiles can be very complicated critters. In fact,
they can be so complicated to write that other pro-
grams exist just to simplify writing them. But most
of the time, the Makefiles for document processing
are simple enough that they can be readily written
by hand.

Most of the examples in this section will be drawn
from the (very simple) Makefile for this article itself.
You can see the entire text of this Makefile in Figure 4
on page 8.

Makefiles are almost always named Makefile, since
that is the name of the file read by make by default.

4.1 Rules

The basic concept in a Makefile is a rule that explains
how one file can be made from another. For instance,
consider the following rule, which is excerpted from
the Makefile used to build this article:

wp.dvi: wp.tex
latex wp.tex

This rule says that file wp.dvi, called the rule’s
target, can be made from wp.tex, its prerequi-
site or dependency, by executing the command
latex wp.tex. A corresponding rule explaining how
to make wp.pdf from wp.tex looks like this:

wp.pdf: wp.tex
pdflatex wp.tex

There can be more than one prerequisite per tar-
get. For instance, if index.html is generated from
index.html.m4 and template.m4, you could write a
rule like this:

index.html: index.html.m4 template.m4
cat index.html.m4 template.m4 \

| m4 > index.html

Actually, you’d want to write that command a little
differently, as discussed in 4.5 on page 8.

The lines containing the commands for a rule must
begin with a single tab. An equivalent number of
spaces is not acceptable. This is one of the most
common errors of newbie Makefile writers.

7

all: wp.dvi wp.pdf

wp.dvi: wp.tex
latex wp.tex

wp.pdf: wp.tex
pdflatex wp.tex

install: all
now=‘date +’%Y%m%d’‘; \
dir=~ftp/misc; \
for d in tex dvi pdf; do \

cp wp.$$d $$dir/wp-$$now.$$d; \
done

Figure 4: Makefile used for building this article.

4.2 Pattern rules

Sometimes you’ll want to translate a lot of files in the
same way. When this happens, you can use a pat-
tern rule. These have the same syntax as ordinary
rules (also called explicit rules), except that a per-
cent sign (%) is substituted for the common part of
the target’s and prerequisite’s filenames. Example:

%.dvi: %.tex
latex $<

This example says that a .dvi file can be generated
from a corresponding .tex file by running LATEX on
the .tex file. It also demonstrates the way that $<
expands to the name of the first prerequisite in a
rule’s set of commands.

Pattern rules can have multiple prerequisites, just
like other rules:

%.html: %.html.m4 template.m4
cat $< template.m4 | m4 > $@

This example shows a rule for generating .html
files from corresponding .html.m4 files along with
template.m4. It also shows the way that $@ expands
to the name of a rule’s target.

A specific rule for a file overrides any pattern rule
that would otherwise apply to it. For instance, if you
have many LATEX documents along with one Plain
TEX document, all named with .tex extensions, then
you can write a pattern rule that covers the LATEX
documents and an explicit rule for the Plain TEX ex-
ception.

4.3 Suffix rules

Pattern rules are a feature of most modern make pro-
grams. If you’re concerned about portability to older
makes, then you can use suffix rules instead. The
suffix rule equivalent to the first pattern rule example
is this:

.tex.dvi:
latex $<

Unlike pattern rules, suffix rules may not have ad-
ditional prerequisites.

4.4 Phony targets

One nonobvious possibility is a rule whose target is
not really the name of a file. This is a phony target.
The effect of a phony target is that every time make
needs to make it (either because of a user request or
because it’s a prerequisite for another target that’s
being made), it makes the rule’s prerequisites, then
runs the commands, if any. Here’s a real-life example,
again from the Makefile for this article:

all: wp.dvi wp.pdf

This rule means that whenever make tries to make
the target named all, it makes wp.dvi and wp.pdf.

Another example:

install: all
now=‘date +’%Y%m%d’‘; \
dir=~ftp/misc; \
for d in tex dvi pdf; do \

cp wp.$$d $$dir/wp-$$now.$$d; \
done

This rule says that, to make the install target,
first make the all target, then run the listed com-
mands. The commands copy this article’s LATEX
source and DVI and PDF output formats into the
author’s outgoing ftp directory, in files named based
on the current date.

4.5 Commands in rules

There are a few caveats in writing the commands to
go along with a rule. The install target’s com-
mands above handily illustrate the two most common
ones:

8

• When commands are listed on separate lines,
they are executed in separately launched shells.
You can prevent this by suffixing the lines with
backslash (\) characters as done above.

• Dollar signs are interpreted as introducing make
variable names (make variables aren’t covered in
this article). Dollar signs must be doubled, as
shown above, to work properly in commands.

• If a command fails, but still produces output in
the target file, then the next time make is run, it
will think that the target is up-to-date. The so-
lution to this is to use a temporary file for output
and copy the temporary file to the target only if
successful. For example, this will cause problems
if m4 aborts with an error:

m4 < $< > $@

but this will always work properly:

m4 < $< > $@.tmp && mv $@.tmp $@

4.6 Invoking make

make is most commonly invoked without any options
or arguments. When this is done, it attempts to make
the first target in the file that it sees. Usually, this is
a target like all above, that causes all the documents
or programs in the current directory to be built.

You can also give make the name of a file to make
as an argument on its command line. For instance,
considering again the example shown in Figure 4,
make wp.dvi would only cause wp.dvi to be built,
whereas make install would build all the targets
specified by all, then run the specified commands.
make has a number of options, but these are rarely

used. With GNU make, you can see a list of options
by invoking it with the --help option.

4.7 Further information

For further details on writing Makefiles, consult the
GNU Make manual, which should be available wher-
ever GNU Make is used.

5 Conclusion

In the first part of this series, we took a look at sev-
eral document processing systems and their atten-
dant output formats. In this part, we first looked at

some software packages for drawing graphics. Then
we examined some ad-hoc means for processing doc-
uments. We concluded by examining the workings of
Makefiles for tying together documents.

9

