OVN: Open Virtual Network for Open vSwitch

Ben Pfaff (@Ben_Pfaff) Justin Pettit (@Justin_D_Pettit)

Virtual Networking Overview

Provides a logical network abstraction on top of a physical network

What is OVN?

- Open source virtual networking for Open vSwitch (OVS)
- Provides L2/L3 virtual networking
 - ✓ Logical switches
 - ✓ L2/L3/L4 ACLs (no connection tracking yet)
 - Logical routers
 - Security groups
 - ✓ Multiple tunnel overlays (Geneve, STT, and VXLAN)
 - TOR-based and software-based logical-physical gateways
- Work on same platforms as OVS
 - ✓ Linux (KVM and Xen)
 - ✓ Containers
 - ? DPDK
 - Hyper-V
- Integration with:
 - ✓ OpenStack
 - Other CMSes

The Particulars

- Developed by the same community as Open vSwitch
- Vendor-neutral
- Architecture and implementation have all occurred on public mailing lists
- Developed under the Apache license

Goals

- Production-quality
- Straight-forward design
- Scale to thousands of hypervisors (each with many VMs and containers)
- Improved performance and stability over existing plugin

Container Integration

Containers nested inside VMs can be in logical networks too!

OpenStack Integration with OVN

- OVN has its own Neutron driver
 - Use instead of OVS ML2 driver and agent
- Goal: Reliability and good integration with OVS
 Existing OVS plugin has poor reputation
- Goal: Avoid needing Neutron-specific agents on hypervisors
 - Currently, Neutron L3 and DHCP agents are used
 - OVN will supplant these over time.
- Long term goal (?): Supplant existing OVS driver in deployments

Designed to Scale

- Configuration coordinated through databases
- Local controller converts logical flow state into physical flow state
- Desired state clearly separated from run-time state
- Grouping techniques reduce Cartesian Product issues

OVN Architecture

The OVN Databases

- ovn-northbound
 - OpenStack/CMS integration point
 - High-level, desired state
 - Logical ports -> logical switches -> logical routers
- ovn-southbound
 - Run-time state
 - Location of logical ports
 - Location of physical endpoints
 - Logical pipeline generated based on configured and run-time state

The Daemons

- Central: ovn-northd
 - Converts from the high-level northbound DB to the run-time southbound DB
 - Generates logical flows based on high-level configuration
- Per-hypervisor: ovn-controller
 - Registers chassis and VIFs to southbound DB
 - Converts logical flows into physical flows (ie, VIF UUIDs to OpenFlow ports)
 - Pushes physical configuration to local OVS instance through OVSDB and OpenFlow

An Example

Name

Name

LP1

LP2

LS1

			Chassis (ovn-controller)			
Logica	al Switch	Name	Encap	IP		
ne	Ports	HV1	Geneve	10.0.10		
		HV2	Geneve	10.0.0.11		
			Bindings (ovn-controller)			
Logical_Port		Name	Chassis			
ne	MAC	LP1	HV1			
	AA					
BB		Pipeline (ovn-n	orthd)			
		Datapath	Match	Action		
		LS1	eth.dst = AA	LP1		
		LS1	eth.dst = BB	LP2		
		LS1	eth.dst = <broadcast></broadcast>	LP1,LP2		

LP2 Arrives on HV2

	Chassis (ovn-cont	troller)		
Name Encap		IP		
HV1	Geneve	10.0.0.10		
HV2	Geneve	10.0.0.11		
	Bindings (ovn-con	troller)		
Name	Chassis			
LP1	HV1			
LP2	HV2			
	Pipeline (ovn-no	orthd)		
Datapath	Match	Action		
LS1	eth.dst = AA	LP1		
LS1	eth.dst = BB	LP2		
LS1 eth.dst = <broadcast></broadcast>		LP1,LP2		

Logical_Switch		
Name	Ports	
LS1	LP1,LP2	

Logical_Port				
Name	MAC			
LP1	AA			
LP2	BB			

Security Groups

- Security group: a firewall policy that typically allows all outbound connections plus inbound return traffic.
- Legacy OVS plugin uses namespaces and iptables
 - Slow and badly integrated because of extra layers
- New OVS support for kernel-based connection state tracking
 - Much faster (see OpenStack Vancouver presentation)
 - Also being added to OVS DPDK switch
- OVN will use this new OVS feature to implement reflexive ACLs and construct security groups from them

Gateways

- Based on "vtep" OVSDB schema included with OVS
 - Hardware: Arista, Brocade, Cumulus, Dell, HP, Juniper, Lenovo
 - Software: Implement "vtep" schema in software, via DPDK
 - Will become a reference for building OVS DPDK applications
- Later: move beyond the capabilities of the "vtep" schema to support fail-over, scale-out, and more stateful services

Trying out OVN

Test #1 - ovs-sandbox

- \$ git clone <u>http://github.com/openvswitch/ovs.git</u>
 \$ cd ovs
- \$./boot.sh && ./configure && make
- \$ make sandbox SANDBOXFLAGS="--ovn"

Test #1 - ovs-sandbox

- \$ ovn-nbctl lswitch-add sw0
- \$ ovn-nbctl lport-add sw0 sw0-port1
- \$ ovn-nbctl lport-add sw0 sw0-port2
- \$ ovn-nbctl lport-set-macs sw0-port1 00:00:00:00:00:01
- \$ ovn-nbctl lport-set-macs sw0-port2 00:00:00:00:00:02
- \$ ovs-vsctl add-port br-int lport1 -- \
 set Interface lport1 external ids:iface-id=sw0-port1
- \$ ovs-vsctl add-port br-int lport2 -- \

set Interface lport2 external_ids:iface-id=sw0-port2

Test #1 - ovs-sandbox

- # Trace OpenFlow flows for a packet from port 1 to 2
- \$ ovs-appctl ofproto/trace br-int \
 in_port=1,dl_src=00:00:00:00:00:01,\
 dl_dst=00:00:00:00:00:02 -generate

Test #2 - Multi-node DevStack

\$ git clone http://git.openstack.org/openstackdev/devstack.git

\$ git clone http://git.openstack.
org/stackforge/networking-ovn.git

\$ cd devstack

... Get local.conf from networking-ovn/devstack/

... local.conf.sample or computenode-local.conf.sample

\$./stack.sh

Status

- From start of coding to first ping: 6 weeks
- Limited testing so far:
 - Small numbers of hypervisors and logical networks
 - Simulated scale testing up to 500 hypervisors
- Feature progress:
 - Gateways: In code review
 - . Connection tracking: RFC patches
 - Security groups: In development
 - L3: to-do

Features for 2016?

- Native IP management
 - Integrate DHCP server into ovn-controller
- NAT
- Load-balancing

Resources

- Architecture described in detail in ovn-architecture (5)
- Configuration is through a number of databases
 - OVN Northbound Interface between CMS and OVN (ovn-nb (5))
 - OVN Southbound Holds the configuration and state of the logical and physical components (ovn-sb (5))
- Available in the "master" branch of the main OVS repo:
 - <u>https://github.com/openvswitch/ovs</u>

How you can help

- Try it! Test it! Write Code!
- Report bugs and try it at scale
- Core OVN is being developed on ovs-dev mailing list:
 - <u>http://openvswitch.org/pipermail/dev/</u>
 - + #openvswitch on Freenode
- Neutron plugin for OVN is being developed here:
 - <u>http://git.openstack.org/stackforge/networking-ovn.git</u>
 - openstack-dev mailing list
 - + #openstack-neutron-ovn on Freenode

Thank you!

Justin Pettit (@Justin_D_Pettit) Ben Pfaff (@Ben_Pfaff)