Statistical Distribution Functions
PSPP can calculate several functions of standard statistical distributions. These functions are named systematically based on the function and the distribution. The table below describes the statistical distribution functions in general:
-
PDF.DIST(X[, PARAM...])
Probability density function forDIST
. The domain ofX
depends onDIST
. For continuous distributions, the result is the density of the probability function at X, and the range is nonnegative real numbers. For discrete distributions, the result is the probability ofX
. -
CDF.DIST(X[, PARAM...])
Cumulative distribution function forDIST
, that is, the probability that a random variate drawn from the distribution is less thanX
. The domain ofX
dependsDIST
. The result is a probability. -
SIG.DIST(X[, PARAM...)
Tail probability function forDIST
, that is, the probability that a random variate drawn from the distribution is greater thanX
. The domain ofX
dependsDIST
. The result is a probability. Only a few distributions include anSIG
function. -
IDF.DIST(P[, PARAM...])
Inverse distribution function forDIST
, the value ofX
for which the CDF would yield P. The value of P is a probability. The range depends onDIST
and is identical to the domain for the corresponding CDF. -
RV.DIST([PARAM...])
Random variate function forDIST
. The range depends on the distribution. -
NPDF.DIST(X[, PARAM...])
Noncentral probability density function. The result is the density of the given noncentral distribution atX
. The domain ofX
depends onDIST
. The range is nonnegative real numbers. Only a few distributions include anNPDF
function. -
NCDF.DIST(X[, PARAM...])
Noncentral cumulative distribution function forDIST
, that is, the probability that a random variate drawn from the given noncentral distribution is less thanX
. The domain ofX
dependsDIST
. The result is a probability. Only a few distributions include an NCDF function.
Continuous Distributions
The following continuous distributions are available:
-
PDF.BETA(X)
CDF.BETA(X, A, B)
IDF.BETA(P, A, B)
RV.BETA(A, B)
NPDF.BETA(X, A, B, )
NCDF.BETA(X, A, B, )
Beta distribution with shape parametersA
andB
. The noncentral distribution takes an additional parameter . Constraints:A > 0, B > 0, >= 0, 0 <= X <= 1, 0 <= P <= 1
. -
PDF.BVNOR(X0, X1, ρ)
CDF.BVNOR(X0, X1, ρ)
Bivariate normal distribution of two standard normal variables with correlation coefficient ρ. Two variates X0 and X1 must be provided. Constraints: 0 <= ρ <= 1, 0 <= P <= 1. -
PDF.CAUCHY(X, A, B)
CDF.CAUCHY(X, A, B)
IDF.CAUCHY(P, A, B)
RV.CAUCHY(A, B)
Cauchy distribution with location parameterA
and scale parameterB
. Constraints: B > 0, 0 < P < 1. -
CDF.CHISQ(X, DF)
SIG.CHISQ(X, DF)
IDF.CHISQ(P, DF)
RV.CHISQ(DF)
NCDF.CHISQ(X, DF, )
Chi-squared distribution with DF degrees of freedom. The noncentral distribution takes an additional parameter . Constraints: DF > 0, > 0, X >= 0, 0 <= P < 1. -
PDF.EXP(X, A)
CDF.EXP(X, A)
IDF.EXP(P, A)
RV.EXP(A)
Exponential distribution with scale parameterA
. The inverse ofA
represents the rate of decay. Constraints: A > 0, X >= 0, 0 <= P < 1. -
PDF.XPOWER(X, A, B)
RV.XPOWER(A, B)
Exponential power distribution with positive scale parameterA
and nonnegative power parameterB
. Constraints: A > 0, B >= 0, X >= 0, 0 <= P <= 1. This distribution is a PSPP extension. -
PDF.F(X, DF1, DF2)
CDF.F(X, DF1, DF2)
SIG.F(X, DF1, DF2)
IDF.F(P, DF1, DF2)
RV.F(DF1, DF2)
F-distribution of two chi-squared deviates with DF1 and DF2 degrees of freedom. The noncentral distribution takes an additional parameter . Constraints: DF1 > 0, DF2 > 0, >= 0, X >= 0, 0 <= P < 1. -
PDF.GAMMA(X, A, B)
CDF.GAMMA(X, A, B)
IDF.GAMMA(P, A, B)
RV.GAMMA(A, B)
Gamma distribution with shape parameterA
and scale parameterB
. Constraints: A > 0, B > 0, X >= 0, 0 <= P < 1. -
PDF.LANDAU(X)
RV.LANDAU()
Landau distribution. -
PDF.LAPLACE(X, A, B)
CDF.LAPLACE(X, A, B)
IDF.LAPLACE(P, A, B)
RV.LAPLACE(A, B)
Laplace distribution with location parameterA
and scale parameterB
. Constraints: B > 0, 0 < P < 1. -
RV.LEVY(C, ɑ)
Levy symmetric alpha-stable distribution with scale C and exponent ɑ. Constraints: 0 < ɑ <= 2. -
RV.LVSKEW(C, ɑ, β)
Levy skew alpha-stable distribution with scale C, exponent ɑ, and skewness parameter β. Constraints: 0 < ɑ <= 2, -1 <= β <= 1. -
PDF.LOGISTIC(X, A, B)
CDF.LOGISTIC(X, A, B)
IDF.LOGISTIC(P, A, B)
RV.LOGISTIC(A, B)
Logistic distribution with location parameterA
and scale parameterB
. Constraints: B > 0, 0 < P < 1. -
PDF.LNORMAL(X, A, B)
CDF.LNORMAL(X, A, B)
IDF.LNORMAL(P, A, B)
RV.LNORMAL(A, B)
Lognormal distribution with parametersA
andB
. Constraints: A > 0, B > 0, X >= 0, 0 <= P < 1. -
PDF.NORMAL(X, μ, σ)
CDF.NORMAL(X, μ, σ)
IDF.NORMAL(P, μ, σ)
RV.NORMAL(μ, σ)
Normal distribution with mean μ and standard deviation σ. Constraints: B > 0, 0 < P < 1. Three additional functions are available as shorthand:-
CDFNORM(X)
Equivalent toCDF.NORMAL(X, 0, 1)
. -
PROBIT(P)
Equivalent toIDF.NORMAL(P, 0, 1)
. -
NORMAL(σ)
Equivalent toRV.NORMAL(0, σ)
.
-
-
PDF.NTAIL(X, A, σ)
RV.NTAIL(A, σ)
Normal tail distribution with lower limitA
and standard deviationσ
. This distribution is a PSPP extension. Constraints: A > 0, X > A, 0 < P < 1. -
PDF.PARETO(X, A, B)
CDF.PARETO(X, A, B)
IDF.PARETO(P, A, B)
RV.PARETO(A, B)
Pareto distribution with threshold parameterA
and shape parameterB
. Constraints: A > 0, B > 0, X >= A, 0 <= P < 1. -
PDF.RAYLEIGH(X, σ)
CDF.RAYLEIGH(X, σ)
IDF.RAYLEIGH(P, σ)
RV.RAYLEIGH(σ)
Rayleigh distribution with scale parameter σ. This distribution is a PSPP extension. Constraints: σ > 0, X > 0. -
PDF.RTAIL(X, A, σ)
RV.RTAIL(A, σ)
Rayleigh tail distribution with lower limitA
and scale parameterσ
. This distribution is a PSPP extension. Constraints: A > 0, σ > 0, X > A. -
PDF.T(X, DF)
CDF.T(X, DF)
IDF.T(P, DF)
RV.T(DF)
T-distribution with DF degrees of freedom. The noncentral distribution takes an additional parameter . Constraints: DF > 0, 0 < P < 1. -
PDF.T1G(X, A, B)
CDF.T1G(X, A, B)
IDF.T1G(P, A, B)
Type-1 Gumbel distribution with parametersA
andB
. This distribution is a PSPP extension. Constraints: 0 < P < 1. -
PDF.T2G(X, A, B)
CDF.T2G(X, A, B)
IDF.T2G(P, A, B)
Type-2 Gumbel distribution with parametersA
andB
. This distribution is a PSPP extension. Constraints: X > 0, 0 < P < 1. -
PDF.UNIFORM(X, A, B)
CDF.UNIFORM(X, A, B)
IDF.UNIFORM(P, A, B)
RV.UNIFORM(A, B)
Uniform distribution with parametersA
andB
. Constraints: A <= X <= B, 0 <= P <= 1. An additional function is available as shorthand:UNIFORM(B)
Equivalent toRV.UNIFORM(0, B)
.
-
PDF.WEIBULL(X, A, B)
CDF.WEIBULL(X, A, B)
IDF.WEIBULL(P, A, B)
RV.WEIBULL(A, B)
Weibull distribution with parametersA
andB
. Constraints: A > 0, B > 0, X >= 0, 0 <= P < 1.
Discrete Distributions
The following discrete distributions are available:
-
PDF.BERNOULLI(X)
CDF.BERNOULLI(X, P)
RV.BERNOULLI(P)
Bernoulli distribution with probability of success P. Constraints: X = 0 or 1, 0 <= P <= 1. -
PDF.BINOM(X, N, P)
CDF.BINOM(X, N, P)
RV.BINOM(N, P)
Binomial distribution with N trials and probability of success P. Constraints: integer N > 0, 0 <= P <= 1, integer X <= N. -
PDF.GEOM(X, N, P)
CDF.GEOM(X, N, P)
RV.GEOM(N, P)
Geometric distribution with probability of success P. Constraints: 0 <= P <= 1, integer X > 0. -
PDF.HYPER(X, A, B, C)
CDF.HYPER(X, A, B, C)
RV.HYPER(A, B, C)
Hypergeometric distribution whenB
objects out ofA
are drawn andC
of the available objects are distinctive. Constraints: integer A > 0, integer B <= A, integer C <= A, integer X >= 0. -
PDF.LOG(X, P)
RV.LOG(P)
Logarithmic distribution with probability parameter P. Constraints: 0 <= P < 1, X >= 1. -
PDF.NEGBIN(X, N, P)
CDF.NEGBIN(X, N, P)
RV.NEGBIN(N, P)
Negative binomial distribution with number of successes parameter N and probability of success parameter P. Constraints: integer N >= 0, 0 < P <= 1, integer X >= 1. -
PDF.POISSON(X, μ)
CDF.POISSON(X, μ)
RV.POISSON(μ)
Poisson distribution with mean μ. Constraints: μ > 0, integer X >= 0.