ovs—fields(7) OpenSwitch Manual ovs—fields(7)

NAME
ovs—fields — protocol header fields in OpeniFland Open vSwitch

INTRODUCTION
This document aims to comprehamly document all of the fields, both standard and non-standard, sup-
ported by OpenFlw or Open vSwitch, rgardless of origin.

Fields
A field is a property of a packet. Mostrhiliarly, data fieldsare fields that can be extracted from a pack
Most data fields are copied directly from protocol headers, e.g. at layer 2, the Ethernet source and destina-
tion addresses, or the VLAN ID; at layer 3, the IPv4 or IPv6 source and destination; and at layer 4, the TCP
or UDP ports. Other data fields are computed,ip.drag describes whether a packet is a fragment but it is
not copied directly from the IP header.

Some data fields, calledot fields are alvays present as a consequence of the basiconidtvg technology

in use. The Ethernet header fields are root fields in curezsions of Open vSwitch, though futurerv
sions might support other roots. (Currenttyupport LISP tunnels, which do not encapsulate an Ethernet
headerOpen vSwitch synthesizes one.)

Other data fields are noways present. A pael contains ARP fields, for example, only when its Ethernet
header indicates the Ethertype for ARRO806. In this documentation, we say that a field@dplicable
when it is it present in a packet, andpplicablewhen it is not. (These are not standard termg yafér to

the conditions that determine whether a field is applicalyeessquisitesSome VLAN-related fields are a
special case: these fields arevals applicable, but & a eksignated value or bit that indicates whether a
VLAN header is present, with the remaining values or bits indicating the VLAN headatént (if it is
present).

An inapplicable field does not ¥ a \alue, not gen a rominal ‘value” such as all-zero-bits. In mgreir-
cumstances, Openkioand Open vSwitch allw references only to applicable fields. For example, one may
match (seéMatching below) a given field only if the match includes the figddrerequisite, e.g. matching
an ARP field is only allowed if one also matches on Ethertype 0x0806.

Sometimes a packet may contain multiple instances of a h&adexample, a packet may contain multi-
ple VLAN or MPLS headers, and tunnels can caugedata field to recutOpenFlav and Open vSwitch do

not address these cases uniforrity VLAN and MPLS headers, only the outermost header is accessible,
so that inner headers may be accessed onlpbyping” (removing) the outer headefOpen vSwitch sup-
ports only a single VLAN header inyamase.) Br tunnels, e.g. GRE or VXLAN, the outer header and
inner headers are treated as different data fields.

Many network protocols are built in layers as a stack of concatenated headers. Each header typically con-
tains a ‘next type’ fi eld that indicates the type of the protocol header that follows, e.g. Ethernet contains an
Ethertype and IPv4 contains a IP protocol type. Hteejgtional cases, where protocols are layered but an
outer layer does not indicate the protocol type for the inner,layegjves anly an ambiguous indication,

are troublesome. An MPLS headérr example, only indicates whether another MPLS header or some
other protocol follavs, and in the latter case the inner protocol must be known from the context. In these
exceptional cases, Openklaand Open vSwitch cannot provide insight into the inner protocol data fields
without additional context, and thus yhieeat all later data fields as inapplicable until an OpemfBiion
explicitly specifies what protocol follows. In the case of MPLS, the OpenFfmp MPLS’ action that
removes the last MPLS header from a patkprovides this context, as the Ethertype of the payload. See
Layer 2.5: MPLSor more information.

OpenFlav and Open vSwitch support some fields other than data fidieimdata fieldselate to the origin
or treatment of a paek, but thg are not extracted from the packet data itself. One example is yis&cph
port on which a packet aved at he switch.Ragister fieldsact like variables: thg give an OpenFlar
switch space for temporary storage while processing a packet. Existing metadatisaedfields hee o
prerequisites.

A field's value consists of an integral number of bytes:. #ata fields, sometimes those bytes arertak
directly from the packet. Other data fields are copied from agpadth padding (usually with zeros and in
the most significant positions). The remaining data fields are transformed in agyseasvthe are copied

Open vSwitch 2.6.90 1

ovs—fields(7)

OpenSwitch Manual ovs—fields(7)

from the packets, to makhem more useful for matching.

Matching

The most important use of fields in Openflis matching to determine whether particular fielcalues
agree with a set of constraints calledhatch A match consists of zero or more constraints onviddal
fields, all of which must be met to satisfy the match. (A match that contain no constrainiayss satis-
fied.) OpenFla and Open vSwitch support a number of forms of matching on individual fields:

Exact matche.g.nw_src=10.1.2.3

Only a particular value of the field is matched; feample, only one particular source IP
address. Exact matches are writterfiels=value The forms accepted faalue depend
on the field.

All fields support exact matches.

Bitwise matche.g. nw_src=10.1.0.0/255.255.0.0

Specific bits in the field must & gecified values; for example, only source IP
addresses in a particular subnet. Bitwise matches are writfegldzsaluémask where
valueand masktake ane of the forms accepted for an exact matclied. Some fields
accept other forms for bitwise matches; fgample,nw_src=10.1.0.0/255.255.0.may
also be writtemw_src=10.1.0.0/16

Most OpenFlar switches do not ally every bitwise matching onwery field (and before
OpenFlav 1.2, the protocol did notven provide for the possibility for most fields). Ex
switches that do ale bitwise matching on a gén field may restrict the masks that are
allowed, e.g. by allowing matches only on contiguous sets of bits starting from the most
significant bit, that is,'CIDR’’ masks [RFC 4632]. Open vSwitch does not allows bit-
wise matching onwery field, but it allows arbitrary bitwise masks orydield that does
support bitwise matching. (Oldeersions had some restrictions, as documented in the
descriptions of individual fields.)

Wildcard, e.g. “anyip_src”

The value of the field is not constrainedildtarded fields may be written digld=*,
although it is unusual to mention them at all. (When specifying a wildcard explicitly in a
command imocation, be sure to using quoting to protect against shell expansion.)

There is a tig difference between wildcarding a field and not specifyingraatch on a
field: wildcarding a field requires satisfying the fislgferequisites.

Some types of matches on ividiual fields cannot be expressed directly with Openféied Open vSwitch.
These can be expressed indirectly:

Open vSwitch

Set matche.g. “tcp_dst (01{80, 443, 8080}"

The value of a field is one of a specified setalfigs; for example, the TCP destination
port is 80, 443, or 8080.

For matches used in flows (sé®ws, below), multiple flows can simulate set matches.

Rang match e.g. “1000< tcp_dst< 1999”

The value of the field must lie within a numerical range, f@ngple, TCP destination
ports between 1000 and 1999.

Range matches can be expressed as a collection of bitwise matches. For example, sup-
pose that the goal is to match TCP source ports 1000 to 1999,vacliis binary repre-
sentations of 1000 and 1999 are:

01111101000
11111001111

The following series of bitwise matches will match 1000 and 1999 and all the values in
between:

2.6.90 2

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

01111101xxx
01112112xxxx
TOXXXXXXXXX
TLOXXXXXXXX
121 1OXXXXXXX
111 10XXXXXX
11112100xxxx

which can be written as the following matches:

tcp,tp_src=0x03e8/0xfff8
tcp,tp_src=0x03f0/0xfffO
tcp,tp_src=0x0400/0xfe00
tcp,tp_src=0x0600/0xff00
tcp,tp_src=0x0700/0xff80
tcp,tp_src=0x0780/0xffcO
tcp,tp_src=0x07c0/0xfff0

Inequality matche.g. “tcp_dst# 80”
The walue of the field differs from a specified value, for example, all TCP destination
ports except 80.

An inequality match on am-bit field can be expressed as a disjunctionnof-bit
matches. For example, the inequality matblah_pcp # 5” can be expressed as
“vlan_pcp = 0/4 orvlan_pcp = 2/2 orvlan_pcp = 0/1" For matches used in flows (see
Flows below), sometimes one can more compacHgress inequality as a highpriority
flow that matches the exceptional case paired wittwarpriority flow that matches the
general case.

Alternatively, an nequality match may be cesrted to a pair of range matches, e.g.
tcp_src# 80 may be expressed &8 £ tcp_src < 80 or 80 <tcp_src< 65535, and then
each range match may in turn beted to a bitwise match.

Conjunctive matche.g. “tcp_src [1{80, 443, 8080} andcp_dst [1{80, 443, 8080}"
As an OpenFhv extension, Open vSwitch supports matching on conditions on conjunc-
tions of the preiously mentioned forms of matching. See the documentatiocofgr id
for more information.

All of these supported forms of matching are special cases of bitwise matching. In some cases this influ-
ences the design of fieldales.ip_frag is the most prominent example: it is designed toerdikof the
practically useful checks for IP fragmentation possible as a single bitwise match.

Shorthands

Some matches are very commonly used, so Open vSwitch accepts shorthand notations. In some cases,
Open vSwitch also uses shorthand notations when it displays matches. Théndpléhorthands are
defined, with their long forms shown on the right side:

ip eth_type=0x0800

ipv6 eth_type=0x86dd

icmp eth_type=0x0800,ip_proto=1
icmp6 eth_type=0x86dd,ip_proto=58
tcp eth_type=0x0800,ip_proto=6
tcp6 eth_type=0x86dd,ip_proto=6
udp eth_type=0x0800,ip_proto=17
udp6 eth_type=0x86dd,ip_proto=17

Open vSwitch 2.6.90 3

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

sctp eth_type=0x0800,ip_proto=132
sctp6 eth_type=0x86dd,ip_proto=132
arp eth_type=0x0806
rarp eth_type=0x8035
mpls eth_type=0x8847
mplsm eth_type=0x8848

Evolution of OpenFlow Fields
The discussion so far applies to all OpemFEmd Open vSwitch ersions. This section starts to wrin
specific information byplaining, in broad terms, the treatment of fields and matches in each QpenFlo
version.

OpenFlow 1.0

OpenFlav 1.0 defined the OpenRloprotocol format of a match as a fixed-length data structure that could
match on the following fields:

. Ingress port.

. Ethernet source and destination MAC.

. Ethertype (with a special value to match frames that lack an Ethertype).
. VLAN ID and priority.

. IPv4 source, destination, protocol, and DSCP.

. TCP source and destination port.

. UDP source and destination port.

. ICMPv4 type and code.

. ARP IPv4 addresses (8&Rnd TPA) and opcode.

Each supported field corresponded to some member of the data structure. Some members represented mul-
tiple fields, in the case of the TOBDP, ICMPv4, and ARP fields whose presence is mutuaijusive.

This also meant that some members were poor fits for their fields: onlywt&dibs of the 16-bit ARP

opcode could be represented, and the ICMPv4 type and code were padded with 8 bits of zeros to fit in the
16-bit members primarily meant for TCP and UDP ports. An additional bitmap member indicated, for each
membey whether its field should be alexact” or “‘wildcarded’ match (seeMatching, with additional

support for CIDR prefix matching on the IPv4 source and destination fields.

Simplicity was recognized early on as the main virtue of this approachiouBly, any fixed-length data
structure cannot support matchingawnprotocols that do not fit. There was no room, for example, for
matching IPv6 fields, which was not a priority at the time. Lack of room to support matching the Ethernet
addresses inside ARP packets actually caused more of a design problel@alditeg to an Open vSwitch
extension action specialized for droppingpoofed’ ARP packts in which the frame and ARP Ethernet
source addressed differed. (This extension waerrsandardized. Open vSwitch dropped support for it a
few releases after it added support for full ARP matching.)

The design of the OpenRdfixed-length matches also illustrates compromises, in both directions, between
the strengths and weaknesses of software and hardware vhadvisays influenced the design of Open-
Flow. Support for matching ARP fields that do fit in the data structuas enly added late in the design
process (and remained optional in OpenFb0), for example, because common switch ASICs did not
support matching these fields.

The compromises iraf’ar of software occurred for more complicated reasons. The Operddsigners did

not knaw how to implement matching in software that wastf dynamic, and general. (A way was later

found [Srinvasan].) Thus, the designers sought to support dynamic, general matchingulbe fast in

realistic special cases, in particular when all of the matchesmiereflows that is, matches that specify

evay field present in a packet, because such matches can be implemented as a single hash table lookup.

Open vSwitch 2.6.90 4

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

Contemporary research supported the feasibility of this approach: the number of microflows in a campus
network had been measured to peak at about 10,000 [Casado, section 3.2]. (Calculatidhatsids can
only be true in a lightly loaded network [Pepelnjak].)

As a result, OpenFio 1.0 required switches to treat micraflanatches as the highest possible priority
This let software switches perform the microflthash table lookup first. Only oraifure to match a
microflow did the switch need taafl back to checking the more general and presumed slower matches.
Also, the OpenFhl 1.0 flov match was minimally flexible, with no support for general bitwise matching,
partly on the basis that this seemed morelyilamenable to relagly efficient software implementation.
(CIDR masking for IPv4 addresses was added velgtiate in the OpenFlo 1.0 design process.)

Microflow matching was later diswered to aid some haradwe implementations. The TCAM chips used

for matching in hardware do not support priority in the same way as Opebé&tdnstead tie priority to
ordering [Pagiamtzis]. Thus, adding asnmatch with a priority between the priorities of existing matches
can require reordering an arbitrary number of TCAM entries. On the other hand, when microflows are high-
est priority they can be managed as a set-aside portion of the TCAM entries.

The emphasis on matching microflows also led designers to carefully consider the bandwidth requirements
between switch and controller: to maximize the number of mievc#dups per second, one must minimize

the size of each flg's description. Thisdvaed the fixed-length format in use, because it expressed com-
mon TCP and UDP microflows in fewer bytes than morgifle “type-length-valué’ (TLV) formats.

(Early versions of OpenRloalso avoided TLVs in general to headfgfrotocol fragmentation.)

Inapplicable Fields

OpenFlav 1.0 does not clearly specify Wao treat inapplicable fields. The members for inapplicable fields

are alvays present in the match data structure, as are the bits that indicate whether the fields are matched,
and the ‘torrect” member and bit values for inapplicable fields is uncl®genFlav 1.0 implementations
changed their behaviowver time as priorities shifted. The early Openkleference implementation, moti-

vated to mak every flow a microflow to enable hashing, treated inapplicable fields as exact matches on a
value of 0. Initially this behavior was implemented in the reference controller only.

Later, the reference switch was also changed to actually forceviaicarded inapplicable fields intox&ct
matches on 0. The latter behavior sometimes caused problems, because the madifie flbe one
reported back to the controller later when it queried the tiidole, and the modifications sometimes meant
that the controller could not properly recognize thesfilbat it had added. In retrospect, perhaps this prob-
lem should hee derted the designers to a design erbat the ability to use a single hash table was held to
be more important than almosteey other consideration at the time.

When more flexible match formats were introduced much, lgtgr disalloved ary mention of inapplica-
ble fields as part of a match. This raised the questionwfthidranslate between thiswedormat and the
OpenFlav 1.0 fixed format. It seemed somewhat inconsistent and lzadkiw treat fields as exact-match in
one format and forbid matching them in the ottser nstead the treatment of inapplicable fields in the
fixed-length format was changed fromaet match on 0 to wildcarding. (A better classifier had by no
eliminated software performance problems with wildcards.)

The OpenFler 1.0.1 errata (released only in 2012) added some additional explanation [QpdnB:lb,
section 3.4], but it did not mandate specific behavior because of variation among implementations.

OpenFlow 1.1

The OpenFlw 1.1 protocol match format was designed as a type/length/value (TLV) format wofatlo
future fleibility. The specification standardized only a single @5&*MT_STANDARD (0) with a fixed-
size payload, described here. The additional fields and bitwise masks in @pdriFlcause this match
structure to beer twice as large as in Openkd..0, 88 bytes versus 40.

OpenFlav 1.1 added support for the following fields:
. SCTP source and destination port.
. MPLS label and traffic control (TC) fields.

Open vSwitch 2.6.90 5

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

. One 64-bit register (hamed “metadata”).

OpenFlav 1.1 increased the width of the ingress port number field (and all other port numbers in the proto-
col) from 16 bits to 32 bits.

OpenFlav 1.1 increased matching flexibility by introducing arbitrary bitwise matching on Ethernet and
IPv4 address fields and on thewtémetadatd'regster field. Switches were not required to support all pos-
sible masks [OpenFp1.1, section 4.3].

By a strict reading of the specification, Open¥lb.1 remaed support for matching ICMPv4 type and
code [OpenFlav 1.1, section A.2.3], but this is likely an editing error because ICMP matching is described
elsavhere [OpenFlev 1.1, Table 3, @ble 4, Figure 4]. Open vSwitch does support ICMPVv4 type and code
matching with OpenFie 1.1.

OpenFlav 1.1 avoided the pitfalls of inapplicable fields that Open#ld.0 encountered, by requiring the
switch to ignore the specified field values [OpenFlol, section A.2.3]. It also implied that the switch that
should ignore the bits that indicate whether to match inapplicable fields.

Physical Ingress Port

OpenFlav 1.1 introduced a e pseudo-field, the physical ingress port. Thggital ingress port is only a
pseudo-field because it cannot be used for matching. It appears only one place in the protocol, in the
“ packet-in” message that passes a packet vedeit he switch to an OpenRiocontroller.

A packets ingress port and physical ingress port are identica for packets processed by a switch fea-
ture such as bonding or tunneling that makes a packet appeaw¢oaara “virtual’’ port associated with

the bond or the tunnel. For such petsk the ingress port is the virtual port and the physical ingress port is,
naturally the physical port. Open vSwitch implements both bonding and tunnelihgstbonding imple-
mentation does not use virtual ports and its tunnels are typically not on the same @aiitelo as their
physical ingress ports (which need not be part gf @vitch), so the ingress port and physical ingress port
are alvays the same in Open vSwitch.

OpenFlow 1.2

OpenFlav 1.2 abandoned the fixed-length approach to matching. One reason was size, since adding support
for IPv6 address matching @wcseen as important), with bitwise maskyudd hare alded 64 bytes to the

match length, increasing it from 88 bytes in OpenFlal to over 150 bytes. Extensibility had also become
important as controller writers increasinghamted support for mefields without having to change mes-

sages throughout the OpenklIgrotocol. The challenges of carefully definingefiklength matches to

avad problems with inapplicable fields had also become cheartione.

Therefore, OpenFi® 1.2 adopted a flo format using a flexible type-lengtlalue (TLV) representation, in

which each TV expresses a match on one field. Thes¥sTlwere in turn encapsulated inside the outer
TLV wrapper introduced in Openklol.1 with the nes identifier OFPMT_OXM (1). (This wrapper ful-

filled its intended purpose of reducing the amount of churn in the protocol when changing match formats;
some messages that included matches remained unchanged from @gdehRtol.2 and later versions.)

OpenFlav 1.2 added support for the following fields:

. ARP hardware addresses (SHA and THA).

. IPv4 ECN.

. IPv6 source and destination addressew lifdoel, DSCPECN, and protocol.

. TCR UDP, and SCTP port numbers when encapsulated inside IPv6.

. ICMPV6 type and code.

. ICMPv6 Neighbor Disceery target address and source and target Ethernet addresses.

The OpenFler 1.2 format, calledDXM (OpenFlow Extensible Mdty, was modeled closely on arten-
sion to OpenFhw 1.0 introduced in Open vSwitch 1.1 calldXM (Nicira Extended Matis). Each OXM or
NXM TLV has the following format:

Open vSwitch 2.6.90 6

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

type
16 7 1 8 length bytes
’vendor/clas# field |M|Iength‘] body

The most significant 16 bits of the NXM or OXM headw=tledvendor by NXM andclassby OXM, iden-
tify an olganization permitted to allocate identifiers for fields. NXM allocates ond/wndors, 0x0000 for
fields supported by Openfial.0 and 0x0001 for fields implemented as an Open vSwiiiemsion. XM
assigns classes as follows:

0x0000 OFPXMC_NXM_0).
0x0001 OFPXMC_NXM_1).
Reserved for NXM compatibility.

0x0002 to Ox 7t
Reserved for allocation to ONF members, but none yet assigned.

0x8000 OFPXMC_OPENFLOW_BASIC)
Used for most standard Openwl6ields.

0x8001 OFPXMC_PACKET_REGS)
Used for packet register fields in Openklb5 and later.

0x8002 to Oxffe
Reserved for the Openklspecification.

Oxffff (OFPXMC_EXPERIMENTER)
Experimental use.

Whenclassis Oxffff, the OXM header is extended to 64 bits by using the first 32 bits of the body as an
experimenter field whose most significant byte is zero and whose remaining bytes argamiz&tionally

Unique Identifier (OUI) assigned by the IEEE [IEEE OUI], aswshdelav. OpenFlav says that support

for experimenter fields is optional. Open vSwitch 2.4 and later does support them, primarily so that it can
support theONFOXM_ET_* code points defined by official Open Networking Foundation extensions to
OpenFlav 1.3 in e.g. [TCP Flags Match Field Extension].

type experimenter
16 7 1 8 8 24 (length - 4) bytes
’ class | field |HM|Iengtﬁ] zero oul ‘] body ‘
Oxffff 0x00

Taken as a wmit, class(or vendor), field, and experimenter (when present) uniquely identify a particular
field.

Whenhasmask(abbreviatedHM above) is 0, the OXM is an gact match on an entire field. In this case,
the body (excluding the experimenter field, if present) is a single value to be matched.

Whenhasmaskis 1, the OXM is a bitwise match. The body (excluding the experimenter field) consists of a
value to match, followed by the bitwise mask to ap@lyi-bit in the mask indicates that the corresponding

bit in the value should be matched and a 0-bit that it should be ignored. For example, for an IP address
field, a value of 192.168.0.0 followed by a mask of 255.255.0.0 would match addresses in the
196.168.0.0/16 subnet.

. Some fields might not support masking at all, and some fields that do support masking
might restrict it to certain patterns. Foaenple, fields that & IP address values might
be restricted to CIDR masks. The descriptions of individual fields note these restrictions.

. An OXM TLV with a mask that is all zeros is not useful (although it is not forbidden),
because it is has the same effect as omitting thveentirely.

. It is not meaningful to pair a 0-bit in an OXM mask with a 1-bit in &g, and Open
vSwitch rejects such an XM with the error OFPBMC_BAD_WILDCARDS, as

Open vSwitch 2.6.90 7

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

required by OpenFie 1.3 and later.

The length identifies the number of bytes in the bpihcluding the 4-bytexperimenter headerif it is
present. Each OXM T has a fixed length; that is, gén class field, experimenter (if present), andhas-
mask, length is a constant. Thiength is included explicitly to allv software to minimally parse XM
TLVs of unknown types.

OXM TLVs nust be ordered so that a fielgrerequisites are satisfied before it is parsed. For example, an
OXM TLV that matches on the IPv4 source address field is onlywedldollowing an OXM TV that
matches on the Ethertype for IPv4. Similadp OXM TLV that matches on the TCP source port must fol-

low a TLV that matches an Ethertype of IPv4 or IPv6 and one that matches an IP protocol of TCP (in that
order). The order of OXM TLVs is not otherwise restricted; no canonical ordering is defined.

A given field may be matched only once in a series of OXM TLVs.
OpenFlow 1.3

OpenFlav 1.3 showed OXM to be largely successful, by adding fields without making gnchanges to
how flow matches otherwise worked. It added OXMs for the following fields supported by Open vSwitch:

. Tunnel ID for ports associated with e.g. VXLAN aryed GRE.
. MPLS “bottom of stack’(BOS) bit.

OpenFlav 1.3 also added OXMs for the following fields not documented here and not yet implemented by
Open vSwitch:

. IPv6 extension header handling.
. PBB I-SID.
OpenFlow 1.4
OpenFlav 1.4 added OXMs for the following fields not documented here and not yet implemented by Open
vSwitch:
. PBB UCA.
OpenFlow 1.5
OpenFlav 1.5 added OXMs for the following fields supported by Open vSwitch:
. TCP flags.
. Packet registers.
. The output port in the Openfaction set.

OpenFlav 1.5 also added OXMs for the following fields not documented here and not yet implemented by
Open vSwitch:

. Packet type.

FIELDS REFERENCE
The following sections document the fields that Open vSwitch supports. Each section provides introductory
material on a group of related fields, followed by information on each individual field. In addition to field-
specific information, each field begins with a table with entries for the following important properties:

Name The fields rame, used for parsing and formatting the field, e.gvérofctl commands.
For historical reasons, some fieldsvhan additional name that is accepted as an alterna-

tive in parsing. This name, when there is one, is listed as well, ‘éug. (aka tun-
nel_id).”

Width The fields width, alvays a multiple of 8 bits. Some fields dbose all of the bits, so this
may be accompanied by awrpéanation. For example, Openfleembeds the 2-bit IP
ECN field as as thewobits in an 8-bit byte, and so its width is expressed as “8 bits (only
the least-significant 2 bits may be nonzéro).

Open vSwitch 2.6.90 8

ovs—fields(7)

Open vSwitch

OpenSwitch Manual ovs—fields(7)

Format Hav a value for the field is formatted or parsed &yg., ovs—ofctl. Some possibilities are

generic:

decimal
Formats as a decimal numb&n input, accepts decimal numbers oxddeci-
mal numbers prefixed x.

hexadecimal
Formats as a hexadecimal number prefixedOky On input, accepts decimal
numbers or hexadecimal numbers prefixedixy(The default for parsing isot
hexadecimal: only 8x prefix causes input to be treated as hexadecimal.)

Ethernet
Formats and accepts the common Ethernet address fRRIREXXC XX XX XX.

IPv4 Formats and accepts the dotted-quad formbic.d. For bitwise matches, fer
mats and acceptsldresdengthCIDR notation in addition taddresgmask

IPv6 Formats and accepts the common IPv6 address formats, plus CIDR notation for
bitwise matches.

OpenFlav 1.0 port
Accepts 16-bit port numbers in decimal, plus OpewRiell-known port names
(e.g.IN_PORT) in uppercase or lowercase.

OpenFlav 1.1+ port
Same syntax as Openfld.O0 ports but for 32-bit OpenRho1.1+ port number
fields.

Other field-specific formats are explained along with their fields.

Masking

For most fields, this says “arbitrary bitwise masks eaning that a fls may match an
combination of bits in the field. Some fields instead $axatt match only which
means that a fle that matches on this field must match on the whole field instead of just
certain bits. Either @y, this reports masking support for the latest version of Open
vSwitch using &M or NXM (that is, either OpenFle 1.2+ or OpenFlay 1.0 plus Open
vSwitch NXM extensions). In particula®penFlav 1.0 (without NXM) and 1.1 dow’
always support maskingven if Open vSwitch itself does; refer to tidpenFlow 1.0 and
OpenFlow 1.1 rows to learn about masking with these protocol versions.

Prerequisites

Requirements that must be met to match on this fieldefample,ip_src has IPv4 as a
prerequisite, meaning that a match must incleitie type=0x0800o match on the IPv4
source address. The following prerequisites, with their requirements, are currently in use:

none (no requirements)

VLAN VID
vlan_tci=0x1000/0x100(i.e. a VLAN header is present)

ARP eth_type=0x080GARP) oreth_type=0x8035RARP)
IPv4d eth_type=0x0800
IPv6 eth_type=0x86dd

IPv4/IPv6
IPv4 or IPv6

MPLS eth_type=0x8847or eth_type=0x8848
TCP IPv4/IPv6 andp_proto=6
UDP IPv4/IPv6 andp_proto=17

2.6.90 9

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

SCTP IPv4/IPv6 anig_proto=132

ICMPv4
IPv4 andip_proto=1

ICMPV6
IPv6 andip_proto=1

ND solicit
ICMPvV6 andicmp_type=135andicmp_code=0

ND advert
ICMPvV6 andicmp_type=136andicmp_code=0

ND ND solicit or ND advert

The TCRUDP, and SCTP prerequisites alsoveahe special requirement thaw_frag is
not being used to seleclater fragments. T his is because only the first fragment of a
fragmented IPv4 or IPv6 datagram contains the TCP or UDP header.

Access Most fields are‘fread/write] w hich means that common Openkleactions like set_field
can modify them. Fields that areead-only’ cannot be modified in these general-pur
pose ways, although there may be others ways that actions can modify them.

OpenFlav 1.0

OpenFlav 1.1
These rows report thevd of support that OpenFi® 1.0 or OpenFlw 1.1, respectiely,
has for a field. For OpenRio1.0, supported fields are reported as either “yesde
match only)’ for fields that do not support yamitwise masking or “yes (CIDR match
only)” for fields that support CIDR masking. Open#lb.1 supported fields report either
“yes (exact match only)or simply “yes” for fields that do support arbitrary masks.
These OpenFle versions supported a &d collection of fields that cannot betended,
so many more fields are reported as “not supported.

OXM
NXM These rows report the OXM and NXM code points that correspond verafggld. Either
or both may be “noné.

A field that has only an OXM code point is usually one that was standardized before it
was added to Open vSwitch. A field that has only an NXM code point is usually one that
is not yet standardized. When a field has bo¥MCQand NXM code points, it usually
indicates that it was introduced as an Open vSwittdnsion under the NXM code point,
then later standardized under the OXM code point. A field cem ftmare than one KM

code point if it was standardized in OpenFlb.4 or later and additionally introduced as

an official ONF extension for Openkiol.3. (A field that has neitherXd nor NXM

code point is typically an obsolete field that is supported in some other form udihg O

or NXM.)

Each code point in these rows is described in the faRAME (numbe} since Open-
Flow specand Open vSwitclversion” e.g. “OXM_OF_ETH_TYPE (5) since Open-
Flow 1.2 and Open vSwitch 17T he named OpenRlospe¢ which is the version of
OpenFlav that standardized the code point, is omitted for NXM code points becayse the
are nonstandard. Theersionis the version of Open vSwitch that first supported the code
point. TheNAME, which specifies a name for the code point, starts with a prefix that
designates a class and, in some casegnhdoy as isted in the following table. Refer
back toOpenFlow 1.2 underEvolution of OpenFlow Fields for more information on
OXM/NXM classes and vendors. Finallyumberis the field number within the class and

vendor.
Prefix \endor Class
NXM_OF (none) 0x0000

Open vSwitch 2.6.90 10

ovs—fields(7)

Open vSwitch

OpenSwitch Manual

NXM_NX
OXM_OF
OXM_OF_PKT_REG
NXOXM_ET
ONFOXM_ET

(none) 0x0001
(none) 0x8000
(none) 0x8001

0x00002320 Oxffff
0x4f4e4600 OXxffff

2.6.90

ovs—fields(7)

11

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

CONJUNCTIVE MATCH FIELDS

Summary:
Name Bytes Mask RW? Prereqs Support
conj_id 4 no no none Q/S 2.4+

An individual OpenFlar flow can match only a single value for each fieldweeer, Stuations often arise

where one wants to match one of a set of values within a field or fields. For matching a single field against a
set, it is straightforward and efficient to add multiple flows to the fédle, one for each value in the set.

For example, one might use the following e to send packets with IP source addeeds c, or d to the
OpenFlav controller:

ip,ip_src=a actions=controller
ip,ip_src=b actions=controller
ip,ip_src=c actions=controller
ip,ip_src=d actions=controller

Similarly, these flows send packets with IP destination adayédsg, or h to the OpenFl controller:

ip,ip_dst=e actions=controller
ip,ip_dst=f actions=controller
ip,ip_dst=g actions=controller
ip,ip_dst=h actions=controller

Installing all of the abee flows in a $ngle flow table yields a disjunaté dfect: a packet is sent to the con-
troller if ip_src O{a,b,c,d} orip_dst O {ef,g,h} (or both). (Pedanticallyf both of the abee sts of flavs
are present in the flotable, thg should hae dfferent priorities, because Openwlgays that the results
are undefined when twilows with same priority can both match a single packet.)

Suppose, on the other hand, one wishes to match conpincthat is, to send a packet to the controller
only if bothip_src O{ab,c,d} andip_dst O{ef,g,h}. This requires 4 4 = 16 flows, one for each possible
pairing ofip_src andip_dst. That is acceptable for our small example, but it does not gracefully extend to
larger sets or greater numbers of dimensions.

The conjunction action is a solution for conjuneé matches that is built into Open vSwitch.canjunc-

tion action ties groups of individual Openildlows into highetlevel ‘‘conjunctive flows”. Each group
corresponds to one dimension, and each flgthin the group matches one possible value for the dimen-
sion. A packet that matches onenflirom each group matches the conjurefiow.

To implement a conjunate flow with conjunction, assign the conjunate flow a 2-bit id, which must be
unique within an OpenHe table. Assign each of the= 2 dmensions a unique number from 1rtothe
ordering is unimportant. Add one fido the OpenFlw flow table for each possible value of each dimen-
sion with conjunction(id, k/n) as the flav's actions, wherek is the number assigned to thewfle dmen-
sion. Together these flows specify the conjuneti flow's match condition. When the conjungi match
condition is met, Open vSwitch looks up one morg ftbat specifies the conjuneti flow's actions and
receves its statistics. This flw is found by settingonj_id to the specifiedd and then again searching the
flow table.

The following flows provide an example. Wheaethe IP source is one of the values in the flows that
match on the IP source (dimension 1 of @&)d the IP destination is one of the values in the flows that
match on IP destination (dimension 2 of 2), Open vSwitch searches for thdlomatcheson|_id against

the conjunction ID (1234), finding the firstuldisted belov.

conj_id=1234 actions=controller

ip,ip_src=10.0.0.1 actions=conjunction(1234, 1/2)
ip,ip_src=10.0.0.4 actions=conjunction(1234, 1/2)
ip,ip_src=10.0.0.6 actions=conjunction(1234, 1/2)
ip,ip_src=10.0.0.7 actions=conjunction(1234, 1/2)
ip,ip_dst=10.0.0.2 actions=conjunction(1234, 2/2)
ip,ip_dst=10.0.0.5 actions=conjunction(1234, 2/2)
ip,ip_dst=10.0.0.7 actions=conjunction(1234, 2/2)

Open vSwitch 2.6.90 12

ovs—fields(7)

OpenSwitch Manual ovs—fields(7)

ip,ip_dst=10.0.0.8 actions=conjunction(1234, 2/2)

Many subtleties exist:

Open vSwitch

In the example abwe, every flow in a dngle dimension has the same form, that is, dimen-
sion 1 matches oip_src and dimension 2 oip_dst, but this is not a requirement. Baf-

ent flows within a dimension may match onfeliént bits within a field (e.g. IP nednk
prefixes of diferent lengths, or TCP/UDP port ranges as bitwise matchesyeoroa
entirely different fields (e.g. to match packets for TCP source port 80 or TCP destination
port 80).

The flows within a dimension carany their matches across more than one field, e.g. to
match only specific pairs of IP source and destination addresses or L4 port numbers.

A flow may hare multiple conjunction actions, with diferentid values. This is useful for
multiple conjunctie flows with overlapping sets. If one conjuneé flow matches packts
with both ip_src 0 {ab} and ip_dst O {d,e} and a second conjuneé flow matches
ip_src O {b,c} and ip_dst [{f,g}, for example, then the flo that matchesp_src=b
would hare wo conjunction actions, one for each conjunaiflow. The order ofcon-
junction actions within a list of actions is not significant.

A flow with conjunction actions may also includeote actions for annotations, but not
ary other kind of actions. (Thewould not be useful because yheould never be e
cuted.)

All of the flows that constitute a conjunetiflow with a given id must hae the same pri-
ority. (Flows with the saméd but different priorities are currently treated asfetiént
conjunctve flows, that is, currentlid values need only be unique within an Open¥ta-

ble at a gren priority. This behavior isrt’guaranteed to stay the same in later releases, so
please usél values unique within an Openkictable.)

Conjunctie flows nmust not @erlap with each othemat a dven priority, that is, ag given
paclet must be able to match at most one conjuadtow & a gven priority. Overlap-
ping conjunctie flows yield unpredictable results.

Fdlowing a conjunctie flow match, the search for the Wowith conj_id=id is done in

the same general-purpos@yas other fl table searches, so one can use flows with
conj_id=id to act diferently depending on circumstances. (One exception is that the
search for theonj_id=id flow itself ignores conjunaté flows, to aoid recursion.) If the
search withconj_id=id fails, Open vSwitch acts as if the conjumetifow had not
matched at all, and continues searching the tiédole for other matching flows.

OpenFlav prerequisite checking occurs for thevilavith conj_id=id in the same way as
ary other flav, eg. in an OpenFle 1.1+ contat, putting amod_nw_srcaction into the
example abge would require adding aip match, lile this:

conj_id=1234,ip actions=mod_nw_src:1.2.3.4,controller

OpenFlav prerequisite checking also occurs for the widlial flows that comprise a con-
junctive match in the same way asyasther flow.

The flows that constitute a conjunetiflow do not have wseful statistics. Theare never
updated with byte or paek counts, and so on. (For such avfltherefore, the idle and
hard timeouts work much the same way.)

Sometimes there is a choice of which flows include a particular match. For example, sup-
pose that we added an extra constraint to our example, to matphson O { a,b,c,d}
andip_dst O{ef,g,h} andtcp_dst=i. One way to implement this is to add thewmneon-

straint to theconj_id flow, like this:

conj_id=1234,tcp,tcp_dst¥actions=mod_nw_src:1.2.3.4,controller

2.6.90 13

ovs—fields(7)

OpenSwitch Manual ovs—fields(7)

but this is not recommendedbecause of the cost of thete flow table lookup. Instead,
add the constraint to the individualwls, either in one of the dimensions or (slightly bet-
ter) all of them.

A conjunctve match must hae n = 2 dimensions (otherwise a conjunaimatch is not
necessary). Open vSwitch enforces this.

Each dimension within a conjuneti match should ordinarily he nore than one fiw.
Open vSwitch does not enforce this.

Conjunction ID Field

Name:
Width:
Format:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:

OXM:
NXM:

conj_id
32bits
decimal
notmaskable
none
read-only
notsupported
notsupported
none
NXM_NX_CONJ_ID (37) since Open vSwitch 2.4

Used for conjunctie matching. See alve for more information.

Open vSwitch

2.6.90 14

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

TUNNEL FIELDS

Summary:
Name Bytes Mask RW? Prereqgs Support
tun_id akatunnel_id 8 yes yes none OF1.3sand OVS 1.1+
tun_src 4 yes yes none /S 2.0+
tun_dst 4 yes yes none /S 2.0+
tun_ipv6_src 16 yes yes none OVS 25+
tun_ipv6_dst 16 yes yes none OVS 25+
tun_gbp_id 2 yes yes none Q/S 2.4+
tun_gbp_flags 1 yes yes none Q/S 2.4+
tun_metadata0O 124 yes yes none OVS 25+
tun_metadatal 124 yes yes none OVS 25+
tun_metadata2 124 yes yes none OVS 25+
tun_metadata3 124 yes yes none OVS 25+
tun_metadata4 124 yes yes none OVS 25+
tun_metadata5 124 yes yes none OVS 25+
tun_metadata6 124 yes yes none OVS 25+
tun_metadata7 124 yes yes none OVS 25+
tun_metadata8 124 yes yes none OVS 25+
tun_metadata9 124 yes yes none OVS 25+
tun_metadatal0 124 yes yes none OVS 25+
tun_metadatall 124 yes yes none OVS 25+
tun_metadatal2 124 yes yes none OVS 25+
tun_metadatal3 124 yes yes none OVS 25+
tun_metadatal4d 124 yes yes none OVS 25+
tun_metadatal5 124 yes yes none OVS 25+
tun_metadatal6 124 yes yes none OVS 25+
tun_metadatal? 124 yes yes none OVS 25+
tun_metadatal8 124 yes yes none OVS 25+
tun_metadatal9 124 yes yes none OVS 25+
tun_metadata20 124 yes yes none OVS 25+
tun_metadata21 124 yes yes none OVS 25+
tun_metadata22 124 yes yes none OVS 25+
tun_metadata23 124 yes yes none OVS 25+
tun_metadata24 124 yes yes none OVS 25+
tun_metadata25 124 yes yes none OVS 25+
tun_metadata26 124 yes yes none OVS 25+
tun_metadata27 124 yes yes none OVS 25+
tun_metadata28 124 yes yes none OVS 25+
tun_metadata29 124 yes yes none OVS 25+
tun_metadata30 124 yes yes none OVS 25+
tun_metadata31l 124 yes yes none OVS 25+
tun_metadata32 124 yes yes none OVS 25+
tun_metadata33 124 yes yes none OVS 25+
tun_metadata34 124 yes yes none OVS 25+
tun_metadata35 124 yes yes none OVS 25+
tun_metadata36 124 yes yes none OVS 25+
tun_metadata37 124 yes yes none OVS 25+
tun_metadata38 124 yes yes none OVS 25+
tun_metadata39 124 yes yes none OVS 25+
tun_metadata40 124 yes yes none OVS 25+
tun_metadata41 124 yes yes none OVS 25+
tun_metadata42 124 yes yes none OVS 25+

Open vSwitch 2.6.90 15

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

tun_metadata43 124 yes yes none OVS 25+
tun_metadata44 124 yes yes none OVS 25+
tun_metadata45 124 yes yes none OVS 25+
tun_metadata46 124 yes yes none OVS 25+
tun_metadata47 124 yes yes none OVS 25+
tun_metadata48 124 yes yes none OVS 25+
tun_metadata49 124 yes yes none OVS 25+
tun_metadata50 124 yes yes none OVS 25+
tun_metadata51 124 yes yes none OVS 25+
tun_metadata52 124 yes yes none OVS 25+
tun_metadata53 124 yes yes none OVS 25+
tun_metadata54 124 yes yes none OVS 25+
tun_metadata55 124 yes yes none OVS 25+
tun_metadata56 124 yes yes none OVS 25+
tun_metadata57 124 yes yes none OVS 25+
tun_metadata58 124 yes yes none OVS 25+
tun_metadata59 124 yes yes none OVS 25+
tun_metadata60 124 yes yes none OVS 25+
tun_metadata61 124 yes yes none OVS 25+
tun_metadata62 124 yes yes none OVS 25+
tun_metadata63 124 yes yes none OVS 25+
tun_flags 2 (low 1 hits) yes yes none OVS 25+

The fields in this group relate to tunnels, which Open vSwitch supportseralstorms (GRE, VXLAN,
and so on). Most of these fields do appear in the wire format of a packety soetlgata fields from that
point of view, but they are metadata from an Openfaldlow table point of viev because thedo not appear
in packets that are forwarded to the controller or to ordinary (non-tunnel) output ports.

Open vSwitch supports a spectrum of usage models for mapping tunnels to @paorEo

“ Port-basedtunnels

In this model, an OpenRlport represents one tunnel: it matches a particular type of
tunnel traffic between twlP endpoints, with a particular tunneé¥ (f keys ae in use).

In this situation,in_port sufiices to distinguish one tunnel from anothes he tunnel
header fields hee little importance for OpenHw processing. (Theare still populated
and may be used if it is ceenient.) The tunnel header fields play no role in sending
paclets out such an Openkiqort, either because the Openkdoport itself fully speci-

fies the tunnel headers.

The following Open vSwitch commands create a bridgent, add porttapO to the
bridge as OpenHw port 1, establish a port-based GRE tunnel between the local host and
remote IP 192.168.1.1 using GREyk301 as OpenFe port 2, and arranges to foand

all traffic fromtap0 to the tunnel and vice versa:

ovs—vsctl add—br br-int
ovs-vsctl add—port br-int tap0 —— set interface tap0 ofport_request=1
ovs-vsctl add-port br-int gre0 ——
set interface gre0 ofport_request=2 type=gr\
options:remote_ip=192.168.1.1 options:key=5001
ovs—ofctl add—flov br-int in_port=1,actions=2
ovs—ofctl add—flov br-int in_port=2,actions=1

“ Flow-based’ tunnels
In this model, one OpenRloport represents all possible tunnels of eegitype with an
endpoint on the current host, for example, all GRE tunnels. In this situatiport only
indicates that traffic was reved on the particular kind of tunnel. This is where the tun-
nel header fields are most important:yttaiow the OpenFla tables to discriminate
among tunnels based on their IP endpointseys.kTunnel header fields also determine

Open vSwitch 2.6.90 16

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

the IP endpoints ancelgs of packets sent out such a tunnel port.

The following Open vSwitch commands create a bridgent, add porttapO to the
bridge as OpenHw port 1, establish a flow-based GRE tunnel port 3, and arranges to for
ward all traffic fromtapO to remote IP 192.168.1. e a GRE tunnel with ky 301 and

vice versa:

ovs-vsctl add-br br-int
ovs-vsctl add—port br-int tap0 —— set interface tap0 ofport_request=1
ovs-vsctl add—port br-int allgre —

set interface gre0 ofport_request=2 type=gr\

options:remote_ip=flon options:key=flow

ovs—ofctl add—flon br=int \

'in_port=1 actions=set_tunnel:5001,set_field:192.168.1.1->tun_dst,3’
ovs—ofctl add—flon br=int 'in_port=3,tun_src=192.168.1.1,tun_id=5001 actions=1’

Mixed models.
One may define both flebased and port-based tunnels at the same time. For example, it
is valid and possibly useful to create and configure lgo#® and allgre tunnel ports
described abee.

Traffic is attributed on ingress to the most specific matching tunaekedmple,greOis
more specific thaallgre. Therefore, if both exist, thegreO will be the ingress port for
ary GRE traffic receied from 192.168.1.1 withdy 5001.

On egress, traffic may be directed ty appropriate tunnel port. If bothre0 andallgre
are configured as already described, then the acti@sand set tun-
nel:5001,set field:192.168.1.1->tun_dstsend the same tunnel traffic.

Intermediate models.
Ports may be configured as partially flow-based. kample, one may define an Open-
Flow port that represents tunnels between a pair of endpoints et libe flav table to
discriminate on the fl@ key.

ovs-vswitchd.conf.dif5) describes all the details of tunnel configuration.

These fields do not ki@ any perequisites, which means that arxflmay match on anor dl of them, in ay
combination.

These fields are zeros for packets that did noteaai a unnel.

Tunnel ID Field

Name: tun_id (akatunnel_id)
Width: 64bits

Format: hexadecimal

Masking: arbitrarybitwise masks
Prerequisites: none

Access: read/write

OpenFlav 1.0: notsupported
OpenFlav 1.1: notsupported

OXM: OXM_OF_TUNNEL_ID (38) since OpenHF® 1.3 and Open vSwitch 1.10
NXM: NXM_NX_TUN_ID (16) since Open vSwitch 1.1
Many kinds of tunnels support a tunnel ID:

. VXLAN and Genee havea 24-bit virtual network identifier (VNI).

. LISP has a 24-bit instance ID.

. GRE has an optional 32-biek

. STT has a 64-bitey.

When a pacst is recaied from a tunnel, this field holds the tunnel ID in its least significant bits, zero-

Open vSwitch 2.6.90 17

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

extended to fit. This field is zero if the tunnel does not support an ID, or if no ID is in use for a tunnel type
that has an optional ID, or if an ID of zero reed; or if the packet was not reced over a tunnel.

When a packet is output to a tunnel port, the tunnel configuration determines whether the tunneelD is tak
from this field or bound to a & value. See the earlier description‘pbrt-based’and “flow-based’ tun-
nels for more information.

The following diagram shows the origin of this field in a typieadd GRE tunnel:

Ethernet IPv4 GRE Ethernet
48 48 1 8 32 32 16 16 32 48 48 1
| dst | src[type|| ... |proto] src | dst || ... |type| key | [dst | src |type| -
0x800 47 0x6558
Tunnel IPv4 Source Field
Name: tun_src
Width: 32bits
Format: IPv4
Masking: arbitrarybitwise masks
Prerequisites: none
Access: read/write
OpenFlav 1.0: notsupported
OpenFlav 1.1: notsupported
OXM: none
NXM: NXM_NX_TUN_IPV4_SRC (31) since Open vSwitch 2.0

When a packet is resed from a tunnel, this field is the source address in the outer IP header of the tun-
neled packet. This field is zero if the packet was notvedeiver a tunnel.

When a pao#t is output to a flow-based tunnel port, this field influences the 1Pv4 source address used to
send the packet. If it is zero, then therriel chooses an appropriate IP address based using the routing ta-
ble.

The following diagram shows the origin of this field in a typieadd GRE tunnel:

Ethernet IPv4 GRE Ethernet
48 48 16 8 32 32 16 16 32 48 48 1
| dst | src[type|| ... |proto] src | dst || ... |type| key | [dst | src [type| -
0x800 47 0x6558
Tunnel IPv4 Destination Field
Name: tun_dst
Width: 32bits
Format: IPv4
Masking: arbitrarybitwise masks
Prerequisites: none
Access: read/write
OpenFlav 1.0: notsupported
OpenFlav 1.1: notsupported
OXM: none
NXM: NXM_NX_TUN_IPV4_DST (32) since Open vSwitch 2.0

When a packet is reaed from a tunnel, this field is the destination address in the outer IP header of the

tunneled packet. This field is zero if the packet was notvegtever a unnel.

When a padét is output to a flow-based tunnel port, this field specifies the destination to which the tunnel
packet is sent.

The following diagram shows the origin of this field in a typieadd GRE tunnel:

Open vSwitch 2.6.90 18

ovs—fields(7)

Ethernet

OpenSwitch Manual

IPv4 GRE Ethernet

48 48 16 8 32 32 16 16 32 48 48 16

] dst| src|typeH |proto| src | dst H |
800 47

Tunnel IPv6 Source Field

Name:
Width:
Format:
Masking:

Prerequisites:

Access:
OpenFlav 1.0:
OpenFlav 1.1:
OXM:

NXM:

tun_ipv6_src
128hits
IPv6
arbitrarybitwise masks
none
read/write
notsupported
notsupported
none
NXM_NX_TUN_IPV6_SRC (109) since Open vSwitch 2.5

Similar totun_src, but for tunnels ver IPv6.

Tunnel IPv6 Destination Field

Name:
Width:
Format:
Masking:

Prerequisites:

Access:
OpenFlav 1.0:
OpenFlav 1.1:
OXM:

NXM:

tun_ipv6_dst
128hits
IPv6
arbitrarybitwise masks
none
read/write
notsupported
notsupported
none
NXM_NX_TUN_IPV6_DST (110) since Open vSwitch 2.5

Similar totun_dst, but for tunnels ver IPv6.
VXLAN Group-Based Policy ID Field

Name:

Width:
Format:
Masking:
Prerequisites:
Access:
OpenFlav 1.0:
OpenFlav 1.1:
OXM:

NXM:

For a packet tunneled wer VXLAN with the Group-Based Polc(GBP) extension, this field represents the

tun_gbp_id
16bits
decimal
arbitranybitwise masks
none
read/write
notsupported
notsupported
none
NXM_NX_TUN_GBP_ID (38) since Open vSwitch 2.4

type| key ‘] dst | src | type‘ >
0x6558

ovs—fields(7)

GBP poligy ID. Only paclets that arkie ove a VXLAN tunnel with the GBP extension enabledséahis

field set.

VXLAN Group-Based Policy Flags Field

Name:

Width:
Format:
Masking:
Prerequisites:

Open vSwitch

tun_gbp_flags

8bits

hecadecimal

arbitranybitwise masks
none

2.6.90

19

ovs—fields(7)

OpenSwitch Manual ovs—fields(7)

Access: read/write

OpenFlav 1.0: notsupported

OpenFlav 1.1: notsupported

OXM: none

NXM: NXM_NX_TUN_GBP_FLAGS (39) since Open vSwitch 2.4

For a packet tunneled wer VXLAN with the Group-Based Polc(GBP) extension, this field represents the
GBP polig/ flags. Only packets that arei ove a VXLAN tunnel with the GBP extension enabled/&édhis
field set.

The field has the format shown below:

GBP Flags
T1111111

Lol [AL

Unlabeled bits are reserved and must be transmitted as 0. The followingvbitketided meanings:

D (Don’t Learn)
When set, this bit indicates that the egress tunnel endpoint MUSTI&#In the source
address of the encapsulated frame.

A (Applied
When set, indicates that the group pylias already been applied to this packet. Policies
MUST NOT be gplied by devices when the A bit is set.

Generic Tunnel Option O Field

Name: tun_metadataO

Width: 992bits (124 bytes)

Format: hecadecimal

Masking: arbitranybitwise masks

Prerequisites: none

Access: read/write

OpenFlav 1.0: notsupported

OpenFlav 1.1: notsupported

OXM: none

NXM: NXM_NX_TUN_METAD ATAOQ (40) since Open vSwitch 2.5

These fields provide Openkilcaccess to the generic type-lengtile options defined by the Gerdun-
neling protocol or other protocols with options in the sam¥ fidrmat as Gene @tions. Each of these
options has the following wire format:
header body
16 8 3 5 4x(length - 1) bytes
] class | type | res||engtl1 value ‘

Taken togethey the classandtype in the option format mean that there are about 16 million distinct kinds
of TLV options, too may to give individual OXM code points. Thus, Open vSwitch requires the user to
define the TV options of interest. Up to 64 WLoptions can be bound to generic tunnel option NXM code
points. Each option may ta wp to 124 bytes in its value (the maximum this format\ay and the total

set of bound options must total at most 252 bytes.

Open vSwitch extensions to the Openflprotocol bind TV options to NXM code points. The
ovs—ofctl(8) program offers one way to use thes&mesions, e.g. to configure a mapping from & TL
option withclass Oxffff, type 0, and a body length of 4 bytes:

ovs—ofctl add-tlv—map br0 "{class=0xffff,type=0,len=4}->tun_metadata0"

Open vSwitch 2.6.90 20

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

Once a TV option is properly bound, it can be accessed and modifiedafik ather field, e.g. to send
packets that hee value 1234 for the option described abd the controller:

ovs—ofctl add—flow brO tun_metadata0=1234,actions=controller

Tunnel Flags Field

Name: tun_flags

Width: 16bits (only the least-significant 1 bits may be nonzero)
Format: tunneflags

Masking: arbitranybitwise masks

Prerequisites: none

Access: read/write

OpenFlav 1.0: notsupported

OpenFlav 1.1: notsupported

OXM: none

NXM: NXM_NX_TUN_FLAGS (104) since Open vSwitch 2.5

Flags indicating various aspects of the tunnel encapsulation.

Matches on this field are most eeniently written in terms of symbolic names g in the diagram
belov), each preceded by eitherfor a flag that must be set, effor a flag that must be unset, withouyan
other delimiters between the flags. Flags not mentioned are wildcameexdmple,tun_flags=+oam
matches only OAM paeks. Matches can also be writtenflagigmask whereflags and maskare 16-bit
numbers in decimal or in hexadecimal prefixedky

Currently there is only one flag defined:

oam The tunnel protocol indicated that this is an OAM (Operations and Management) control
packet.

The switch may reject matches against unknown flags.

Newer versions of Open vSwitch may introduce additional flags withmeanings. It is therefore not rec-
ommended to use amact match on this field since the behavior of thesefregs is unknown and should
be ignored.

For non-tunneled packets, the value is 0.

Open vSwitch 2.6.90 21

ovs—fields(7)

METAD ATA FIELDS

OpenSwitch Manual ovs—fields(7)

Summary:
Name Bytes Mask RW? Prereqgs Support
in_port 2 no yes none OVS 11+
in_port_oxm 4 no yes none OF1.2+ and OVS 1.7+
skb_priority 4 no no none
pkt_mark 4 yes yes none /S 2.0+
actset_output 4 no no none OF1.34and OVS 2.4+

These fields relate to the origin or treatment of a @laddut thg are not extracted from the packet data

itself.

Ingress Port Field

Name:

Width:
Format:
Masking:
Prerequisites:
Access:
OpenFlav 1.0:
OpenFlav 1.1:
OXM:

NXM:

in_port
16bits
OpenFlar 1.0 port
notmaskable
none
read/write
yes(exact match only)
yes(exact match only)
none
NXM_OF_IN_PORT (0) since Open vSwitch 1.1

The OpenFlar port on which the packet being processedvedi This is a 16-bit field that holds an Open-
Flow 1.0 port numberfor receiving a packet, the only values that appear in this field are:

1 throughOxfeff (65,279), inclusie.

Cornventional OpenFla port numbers.

OFPP_LOCAL (Oxfffe or 65,534).

The ‘local” port, which in Open vSwitch iswbys named the same as the bridge itself.
This represents a connection between the switch and the local TCP/IP stack. This port is
where an IP address is most commonly configured on an Open vSwitch switch.

OpenFlav does not require a switch toveaa bcal port, but all existing versions of Open
vSwitch hae dways included a local porkuture Directions: Future versions of Open
vSwitch might be able to optionally omit the local port, if someone submits code to
implement such a feature.

OFPP_NONE (Oxffff or 65,535).
OFPP_CONTROLLER (0xfffd or 65,533).

When a controller injects a packet into an OpewRwitch with a ‘packet-out’ request,
it can specify one of these ingress ports to indicate that thetpaels generated inter
nally rather than having been rees on ©me port.

OpenFlav 1.0 specifiedOFPP_NONE for this purpose. Despite that, some controllers
used OFPP_CONTROLLER, and some switches only acceptedFPP_CON-
TROLLER , so penFlav 1.0.2 required support for both ports. OpenfIibl and later
were more clearly drafted to alloonly OFPP_CONTROLLER. For maximum compat-
ibility, Open vSwitch allows both ports with all Openloersions.

Values not mentioned alwe will never appear when receiving a packet, including the following notadlle v

ues:
0

Zero is not a valid OpenRioport number.

OFPP_MAX (0xff00 or 65,280).

Open vSwitch

This value has only been clearly specified aala\port number as of Openkial.3.3.
Before that, its status was uncleard so Open vSwitch haswee alowed OFPP_MAX
to be used as a port numpsp mclets will never be received on this port. (Other

2.6.90 22

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

OpenFlav switches, of course, might use it.)

OFPP_UNSET (0xfff7 or 65,527)
OFPP_IN_PORT (0xfff8 or 65,528)
OFPP_TABLE (0xfff9 or 65,529)
OFPP_NORMAL (0Oxfffa or 65,530)
OFPP_FLOOD (0xfffb or 65,531)
OFPP_ALL (Oxfffc or 65,532)
These port numbers are used only in output actions asmd aggear as ingress ports.

Most of these port numbers were defined in OpemBl®, tut OFPP_UNSETwas anly
introduced in OpenFie 1.5.

Values that will neer appear when receiving a packet may still be matchaghagin the flav table. There
are still circumstances in which those flows can be matched:

. Theresubmit Open vSwitch extension action allows axflable lookup with an arbitrary
ingress port.

. An action that modifies the ingress port field (see below), such dsadgr set_field
followed by an action or instruction that performs anothex flable lookup, such as
resubmit or goto_table

This field is heavily used for matching in Openkltables, but for packet egress, it has ordyyvimited
roles:

. OpenFlav requires suppressing output actionsirioport. That is, the following tw
flows both drop all packets that aeim port 1:

in_port=1,actions=1
in_port=1,actions=drop

(This behsior is occasionally useful for flooding to a subset of ports. Specifying
actions=1,2,3,4for example, outputs to ports 1, 2, 3, and 4, omitting the ingress port.)

. OpenFlav has a special po®®FPP_IN_PORT (with value Oxff8) that outputs to the
ingress port. For xample, in a switch that has four ports numbered 1 through 4,
actions=1,2,3,4,in_porbutputs to ports 1, 2, 3, and 4, including the ingress port.

Because the ingress port field has so little influence orepacicessing, it does not ordinarily reakense

to modify the ingress port field. The field is writable only to support the occasional use case where the
ingress pors mles in packt egress, described alep become troublesome. Forxample,
actions=load:0->NXM_OF_IN_PORT[],output:123 will output to port 123 rgardless of whether it is in

the ingress port. If the ingress port is important, then one mvayasd restore it on the stack:

actions=push:NXM_OF_IN_PORT][],load:0->NXM_OF_IN_PORT[],output:123,pop:NXM_OF_IN_PORT]]
The ability to modify the ingress port is an Open vSwitch extension to OpenFlo

Modifying the ingress port does not peat or frustrate specifying an ingress port in tasubmit action,
becauseesubmit only (optionally) changes tha_port used foresubmit’s flow table lookup. It does not
otherwise affect the ingress port.

OXM | ngress Port Field

Name: in_port_oxm
Width: 32bits

Format: OpenFlar 1.1+ port
Masking: notmaskable
Prerequisites: none

Access: read/write

OpenFlav 1.0: notsupported
OpenFlav 1.1: yes(exact match only)

Open vSwitch 2.6.90 23

ovs—fields(7)

OXM:
NXM:

OpenSwitch Manual ovs—fields(7)

OXM_OF_IN_PORT (0) since OpenFla 1.2 and Open vSwitch 1.7

none

OpenFlav 1.1 and later use a 32-bit port numbso his field supplies a 32-bit weof the ingress port.
Current versions of Open vSwitch support only a 16-bit range of ports:

OpenFlav 1.0 portsOx0000to Oxfeff, inclusive, map to OpenFhv 1.1 port numbers with

the same values.

OpenFlav 1.0 ports Oxff00 to Oxffff, inclusve, map to OpenFlv 1.1 port numbers
Oxffffff00 to OXffffffff .

OpenFlav 1.1 portsOx0000ff00to Oxfffffeff are not mapped and not supported.

in_port andin_port_oxm are two views of the same information, so all of the commentgoport apply
toin_port_oxm too. Modifyingin_port changesn_port_oxm, and vice versa.

Settingin_port_oxm to an unsupported value yields unspecified behavior.
Output Queue Field

Name:
Width:
Format:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:

OXM:
NXM:

skb_priority
32bits
hecadecimal
notmaskable

none

read-only
notsupported
notsupported

none

none

This field influences he packets in the flar will be queued, for quality of service (QoS) purposes, when
they egress the switch. Its range of meaningful values, and their meanings, varies greatly from one Open-
Flow implementation to anothdeven within a single implementation, there is no guarantee that all Open-
Flow ports hae the same queues configured or that all Opemplarts in an implementation can be config-

ured the same way queue-wise.

Configuring queues on Openklas mot well standardized. On Linux, Open vSwitch supports queue config-
uration via OVSDB, specifically th®oS and Queue tables (seevs-vswitchd.conf.db(5)for details).

Ports of Open vSwitch to other platforms might require queue configuration through some separate proto-
col (such as a CLI). Even on Linux, Open vSwitch exposes only a fraction oérirel'k queuing features
through OVSDB, so advanced or unusual uses might require use of separate utilitie3. @penFlav
switches other than Open vSwitch might use OF-CONFIG pioathe configuration methods mentioned
above. Finally, some OpenFlw switches hae a fked number of fixed-function queues (e.g. eight queues
with strictly defined priorities) and others do not suppoyt@mtrol over queuing.

The only output queue that all Openklonplementations must support is zero, to identify a default queue,
whose properties are implementation-defined. Outputting aepszlka queue that does not exist on the out-
put port yields unpredictable behavior: among the possibilities are that thet paighit be dropped or
transmitted with a very high or verypriority.

OpenFlav 1.0 only allaved output queues to be specified as part ockangueue’action that specified both
a queue and an output port. That is, OpenFio0 treats the queue as an argument to an action, not as a

field.

To increase fhebility, OpenFlav 1.1 added an action to set the output queue. This mazkekerried for
ward, without change, through Open®id.5.

Open vSwitch implements the nagiqueuing model of each Openkloersion it supports. Open vSwitch
also includes an extension for setting the output queue as an action in @p&eFlo

When a padt ingresses into an Openwiawitch, the output queue is ordinarily set to 0, indicating the

Open vSwitch

2.6.90 24

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

default queue. Hwever, Open vSwitch supportsavious ways to forward a packet from one OpewFlo
switch to another within a single host. In these cases, Open vSwitch maintains the output queue across the
forwarding step. For example:

. A hop across a Open vSwitch “patch pbftvhich does not actually wolve queuing)
preserves the output queue.

. When a flav sets the output queue then outputs to an Openttlanel port, the encapsu-
lation presergs the output queue. If the kernel TCP/IP stack routes the encapsulated
paclet directly to a physical interface, then that output honors the output queue. Alterna-
tively, if the kernel routes the encapsulated pat another Open vSwitch bridge, then
the output queue set previously becomes the initial output queue on ingress to the second
bridge and will thus be used for further output actions (unleasidden by a ne “set
gueue’ action).

(This description reflects the current behavior of Open vSwitch on Linux. Thigibeha
relies on details of the Linux TCP/IP stack. It could be difficult to enakts to other
operating systems belate same way.)

Futur e Directions: Open vSwitch implements the output queue as a fieldddes not currently expose it
through XM or NXM for matching purposes. If this turns out to be a useful feature, it could be imple-
mented in future versions.

Packet Mark Field

Name: pkt_mark

Width: 32bits

Format: hexadecimal

Masking: arbitranybitwise masks
Prerequisites: none

Access: read/write

OpenFlav 1.0: notsupported

OpenFlav 1.1: notsupported

OXM: none

NXM: NXM_NX_PKT_MARK (33) since Open vSwitch 2.0

Packet mark comes to Open vSwitch from the Linux kernel, in whictskhéuff data structure that repre-
sents a packet contains a 32-bit member naskbdmark. The value okkb_mark propagtes along with
the packet it accompanies whesethe packet goes in thetknel. It has no predefined semantics lautous
kernel-user interfaces can set and match on it, which makes it suitablmddking” packets at one point
in their handling and then acting on the mark latéth iptables, for example, one can mark some ficaf
specially at ingress and then handle that traffic differently at egress based on the marked value.

Packet mark is an attempt at a generalization ofsttte_ mark concept beyond Linux, at least through more
generic naming. Li& skb_priority , packet mark is preserved across forwarding steps within a machine.
Unlike skb_priority , packet mark has no direct effect on packet forwarding: #ileevset in packet mark
does not matter unless some later OpenRable or switch matches on packet mark, or unless theepack
passes through some other kernel subsystem that has been configured to intergretgo#cika specific
ways, e.g. througiptables configuration mentioned abe

Preserving packet mark across kernel forwarding steps relies heavily on kernel support, which ports to non-
Linux operating systems may notveaRegadless of operating system support, Open vSwitch supports
packet mark within a single bridge and across patch ports.

The value of packet mark when a percingresses into the first Open vSwich bridge is typically zero, but it
could be nonzero if its value was previously set by some kernel subsystem.

Action Set Output Port Field

Name: actset_output
Width: 32bits

Open vSwitch 2.6.90 25

ovs—fields(7)

Format:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:

OXM:

NXM:

OpenSwitch Manual ovs—fields(7)

OpenFlar 1.1+ port
notmaskable
none
read-only
notsupported
notsupported
ONFOXM_ET_ACTSET_OUTPUT (43) since OpenFie 1.3 and Open vSwitch 2.4;
OXM_OF_ACTSET_OUTPUT (43) since OpenFie 1.5 and Open vSwitch 2.4
none

Holds the output port currently in the Openklaction set (i.e. from arputput action within a
write_actions instruction). Its value is an Openkl@ort number If there is no output port in the Open-
Flow action set, or if the output port will be ignored (e.g. because there is an output group in the @penFlo
action set), then the value will IPP_UNSET.

Open vSwitch allows artable to match this field. Openkiphoweve, only requires this field to be match-
able from within an OpenRloegress table (a feature that Open vSwitch does not yet implement).

Open vSwitch

2.6.90 26

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

CONNECTION TRACKING FIELDS

Summary:
Name Bytes Mask RW? Prereqs Support
ct_state 4 yes no none Q/S 2.5+
ct_ zone 2 no no none Q/S 2.5+
ct mark 4 yes yes none /S 2.5+
ct label 16 yes yes none OvVSs 25+

Open vSwitch 2.5 and later suppocbnnection tracking,w hich allows bidirectional streams of packets to

be statefully grouped into connections. Open vSwitch connection tracking, for example, identifies the pat-
terns of TCP packets that indicates a successfully initiated connection, as well as those that indicate that a
connection has been torn down. Open vSwitch connection tracking can also identify related connections,
such as FTP data connections spawned from FTP control connections.

An individual paclet passing through the pipeline may be in one of dates: ‘untracked’ or ‘‘tracked”

A paclet isuntradked at the beginning of the Open vSwitch pipeline and continues to be wedrankl the
pipeline irvokes the ct action. The connection tracking fields are all zeroes in an untracked packet. When a
flow in the Open vSwitch pipelinevnkes the ct action, the action initializes the connection tracking fields
and the packet becomeacked for the remainder of its processing.

The connection tracker stores connection state in an internal table, but it only adden&rynéo this table

when act action for a ne& connection irokes ct with thecommit parameterfor a gven connection, when

a ppeline has recutedct, but not yet withcommit, the connection is said to mcommittedState for an
uncommitted connection is ephemeral and does not persist past the end of the pipeline, so some features are
only available to committed connections. A connectionuld typically be left uncommitted as a way to

drop its packets.

Connection tracking is an Open vSwitch extension to OpanFlo
Connection Tracking State Field

Name: ct_state

Width: 32bits

Format: ctstate

Masking: arbitranbitwise masks
Prerequisites: none

Access: read-only

OpenFlav 1.0: notsupported
OpenFlav 1.1: notsupported

OXM: none

NXM: NXM_NX_CT_STATE (105) since Open vSwitch 2.5

This field holds seeral flags that can be used to determine the state of the connection to which #te pack
belongs.

Matches on this field are most eeniently written in terms of symbolic names (listed below), each pre-
ceded by either for a flag that must be set, offor a flag that must be unset, withouyather delimiters
between the flags. Flags not mentioned are wildcardedxBmple,tcp,ct_state=+trk—-newmatches TCP
paclets that hee been run through the connection trackand do not establish ameonnection. Matches
can also be written daggmask whereflagsand maskare 32-bit numbers in decimal or inXaglecimal
prefixed byOx.

The following flags are defined:

new (0x01)
A new onnection. Set to 1 if this is an uncommitted connection.

est(0x02)
Pat of an existing connection. Set to 1 if this is a committed connection.

Open vSwitch 2.6.90 27

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

rel (0x04)
Related to ameasting connection, e.g. an ICMP “destination unreachable'ssage or an
FTP data connections. This flag will only be 1 if the connection to which this one is
related is committed.

Connections identified a®l are separate from the originating connection and must be
committed separatehpll packets for a related connection willveathe rel flag set, not
just the initial packet.
rpl (0x08)
This packet is in the reply direction, meaning that it is in the opposite direction from the

paclet that initiated the connection. This flag will only be 1 if the connection is commit-
ted.

inv (0x10)
The state is walid, meaning that the connection traclcouldnt identify the connection.
This flag is a catch-all for problems in the connection or the connection fraakeas:

. L3/L4 protocol handler is not loaded/wadable. With the Linux kernel data-
path, this may mean that tié conntrack_ipv4 or nf_conntrack _ipv6 mod-
ules are not loaded.

. L3/L4 protocol handler determines that the packet is malformed.
. Packets are unexpected length for protocol.
trk (0x20)

This packet is tracked, meaning that it has previousigrsad the connection traek If
this flag is not set, then no other flags will be set. If this flag is set, then the packet is
tracked and other flags may also be set.

shat (0x40)
This packet was transformed by source address/port translation by a prextesditign.
Open vSwitch 2.6 added this flag.

dnat (0x80)
This packet was transformed by destination address/port translation by a presteding
action. Open vSwitch 2.6 added this flag.

There are additional constraints on these flags, listed in decreasing order of precedence below:
1. Iftrk is unset, no other flags are set.

If trk is set, one or more other flags may be set.

If inv is set, only therk flag is also set.

new andestare mutually excluse.

ok~ 0w

newandrpy are mutually excluse.
6. rel may be set in conjunction with aother flags.
Future versions of Open vSwitch may define/flags.

Connection Tracking Zone Field

Name: ct_zone
Width: 16bits
Format: hecadecimal
Masking: notmaskable
Prerequisites: none
Access: read-only

OpenFlav 1.0: notsupported
OpenFlav 1.1: notsupported

Open vSwitch 2.6.90 28

ovs—fields(7)

OXM:
NXM:

OpenSwitch Manual

none
NXM_NX_CT_ZONE (106) since Open vSwitch 2.5

ovs—fields(7)

A connection tracking zone, the zordue passed to the most receinaction. Each zone is an independent
connection tracking context, so tracking the same packet in multiple contexts requires ustractioan
multiple times.

Connection Tracking Mark Field

Name: ct_mark

Width: 32bits

Format: hexadecimal

Masking: arbitranybitwise masks
Prerequisites: none

Access: read/write

OpenFlav 1.0: notsupported

OpenFlav 1.1: notsupported

OXM: none

NXM: NXM_NX_CT_MARK (107) since Open vSwitch 2.5

The metadata committed, by an action within #xec parameter to thet action, to the connection to
which the current packet belongs.

Connection Tracking Label Field

Name: ct_label

Width: 128bits

Format: hexadecimal

Masking: arbitranybitwise masks
Prerequisites: none

Access: read/write

OpenFlav 1.0: notsupported

OpenFlav 1.1: notsupported

OXM: none

NXM: NXM_NX_CT_LABEL (108) since Open vSwitch 2.5

The label committed, by an action within #weecparameter to thet action, to the connection to which the
current packet belongs.

Open vSwitch 2.6.90 29

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

REGISTER FIELDS

Summary:
Name Bytes Mask RW? Prereqs Support
metadata 8 yes yes none OF1.24and OVS 1.8+
reg0 4 yes yes none /S 1.1+
regl 4 yes yes none /S 1.1+
reg2 4 yes yes none /S 1.1+
reg3 4 yes yes none /S 1.1+
regd 4 yes yes none /S 1.3+
regs 4 yes yes none Q/S 1.7+
regé 4 yes yes none Q/S 1.7+
reg7 4 yes yes none Q/S 1.7+
reg8 4 yes yes none Q/S 2.6+
reg9 4 yes yes none Q/S 2.6+
regl10 4 yes yes none Q/S 2.6+
regll 4 yes yes none Q/S 2.6+
regl2 4 yes yes none Q/S 2.6+
regl3 4 yes yes none Q/S 2.6+
regl4 4 yes yes none Q/S 2.6+
regls 4 yes yes none Q/S 2.6+
xreg0 8 yes yes none OF1.34and OVS 2.4+
xregl 8 yes yes none OF1.34and OVS 2.4+
xreg2 8 yes yes none OF1.34and OVS 2.4+
xreg3 8 yes yes none OF1.34and OVS 2.4+
xreg4 8 yes yes none OF1.34and OVS 2.4+
xreg5 8 yes yes none OF1.34and OVS 2.4+
xreg6 8 yes yes none OF1.34and OVS 2.4+
xreg7 8 yes yes none OF1.34and OVS 2.4+
xxreg0 16 yes yes none OVS 26+
xxregl 16 yes yes none OVS 26+
xxreg2 16 yes yes none OVS 26+
xxreg3 16 yes yes none OVS 26+

These fields gie an OpenFlav switch space for temporary storage while the pipeline is running. Whereas
metadata fields can ¥& a neaningful initial value and can persist across some hops across QpenFlo
switches, registers arewadys initially O and their values wer persist across inter-switch hops (netre
across patch ports).

OpenFlow Metadata Field

Name: metadata

Width: 64bits

Format: headecimal

Masking: arbitranbitwise masks
Prerequisites: none

Access: read/write

OpenFlav 1.0: notsupported

OpenFlav 1.1: yes

OXM: OXM_OF_METAD ATA (2) since OpenFle 1.2 and Open vSwitch 1.8
NXM: none

This field is the oldest standardized OpemFtegster field, introduced in Openkiol.1. It was introduced

to model the limited number of uséefined bits that some ASIC-based switches can carry through their
pipelines. Because of hardware limitations, Opewritows switches to support writing and masking only
an implementation-defined subset of bitgereno Lits at all. The Open vSwitch sofare switch alays
supports all 64 bits, but of course an Open vSwitch port to an ASIC wouddHeasame restriction as the
ASIC itself.

Open vSwitch 2.6.90 30

ovs—fields(7)

OpenSwitch Manual ovs—fields(7)

This field has an OXM code point, but Openf#th4 and earlier allw it to be nodified only with a special-
ized instruction, not with dset-field” action. OpenFlav 1.5 remaes this restriction. Open vSwitch does
not enforce this restriction, gerdless of OpenFle version.

Register 0 Field

Name:
Width:
Format:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:

OXM:
NXM:

reg0
32bits
hecadecimal
arbitranybitwise masks
none
read/write
notsupported
notsupported
none
NXM_NX_REGO (0) since Open vSwitch 1.1

This is the first of seeral Open vSwitch registers, all of whichveathe same properties. Open vSwitch 1.1
introduced registers 0, 1, 2, and 3, version 1.3 addgstee 4, version 1.7 added registers 5, 6, and 7, and
version 2.6 added registers 8 through 15.

Extended Register 0 Field

Name:
Width:
Format:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:

OXM:
NXM:

xreg0
64bits
hecadecimal
arbitrarybitwise masks
none
read/write
notsupported
notsupported
OXM_OF_PKT_REGO (0) since OpenFis 1.3 and Open vSwitch 2.4
none

This is the first of the registers introduced in Opewrlo5. OpenFlay 1.5 calls these fields just the

“ paclet ragisters; but Open vSwitch already had 32-bit registers by that name, so Open vSwitch uses the
name ‘extended rgisters’ in an atempt to reduce confusion. The standard allows for up to HJi§tees,

each 64 bits wide, but Open vSwitch only implements 4 gnsions 2.4 and 2.5) or 8 (in version 2.6 and

later).

Each of the 64-bit extended registex®rtays two of the 32-bit rgisters:xreg0 overlays reg0 andregl,
with reg0 supplying the most-significant bits »ifeg0 andregl the least-significant. Similarlxregl over-
laysreg2 andreg3, and so on.

The OpenFlar specification says that, “In most cases, the packet registers can not be matched in tables, i.e.
they usually can not be used in thevil@ntry match structure[OpenFlav 1.5, section 7.2.3.10], but there
is no reason for a software switch to impose such a restriction, and Open vSwitch does not.

Double-Extended Register O Field

Name:
Width:
Format:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:

OXM:

Open vSwitch

xxreg0
128bits
hecadecimal
arbitrarybitwise masks
none
read/write
notsupported
notsupported
none

2.6.90 31

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

NXM: NXM_NX_XXREGO (111) since Open vSwitch 2.6

This is the first of the double-extendedyisters introduce in Open vSwitch 2.6. Each of the 128-bit
extended registersverlays four of the 32-bit igasters:xxreg0 overlays reg0 throughreg3, with reg0 sup-
plying the most-significant bits ofxreg0 and reg3 the least-significantxxregl similarly overlays reg4
throughreg?, and so on.

Open vSwitch 2.6.90 32

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

LAYER 2 (ETHERNET) FIELDS

Summary:
Name Bytes Mask RW? Prereqs Support
eth_srcakadl_src 6 yes yes none OF1.2sand OVS 1.1+
eth_dstakad|_dst 6 yes yes none OF1.2sand OVS 1.1+
eth_typeakad| type 2 no no none OF1.2#and OVS 1.1+

Ethernet is the only layer-2 protocol that Open vSwitch supports. As with most software, Open vSwitch
and OpenFle regad an Ethernet frame to begin with the 14-byte header and end with the final byte of the
payload; that is, the frame check sequence is not considered part of the frame.

Ethernet Source Field

Name:
Width:
Format:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:

OXM:
NXM:

eth_src(akadl_src)
48bits
Ethernet
arbitranbitwise masks
none
read/write
yes(exact match only)
yes
OXM_OF_ETH_SRC (4) since OpenFle 1.2 and Open vSwitch 1.7
NXM_OF_ETH_SRC (2) since Open vSwitch 1.1

The Ethernet source address:

Ethernet
48 48 1
] dst | src | type ‘ e

Ethernet Destination Field

Name: eth_dst(akadl_dst)
Width: 48bits
Format: Ethernet
Masking: arbitranbitwise masks
Prerequisites: none
Access: read/write
OpenFlav 1.0: yes(exact match only)
OpenFlav 1.1: yes
OXM: OXM_OF_ETH_DST (3) since OpenFle 1.2 and Open vSwitch 1.7
NXM: NXM_OF_ETH_DST (1) since Open vSwitch 1.1
The Ethernet destination address:
Ethernet

48 48 1

| dst | src | type ‘ e

Open vSwitch 1.8 and later support arbitrary masks for source and/or destination. Eggiligrsvonly sup-
port masking the destination with the following masks:

01:00:00:00:00:00

Open vSwitch

Match only the multicast bit. Thusdl_dst=01:00:00:00:00:00/01:00:00:00:00:00
matches all multicast (including broadcast) Ethernet gtack and
dl_dst=00:00:00:00:00:00/01:00:00:00:00:0fatches all unicast Ethernet packets.

2.6.90 33

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

fe:ff:ff.ff.ff:ff

Match all bits except the multicast bit. This is probably not useful.
ffff:ff:ff . ff

Exact match (equélent to omitting the mask).

00:00:00:00:00:00
Wildcard all bits (equiglent todl_dst=*.)

Ethernet Type Field

Name: eth_type(akadl_type)
Width: 16bits

Format: hecadecimal
Masking: notmaskable
Prerequisites: none

Access: read-only

OpenFlav 1.0: yes(exact match only)

OpenFlav 1.1: yes(exact match only)

OXM: OXM_OF_ETH_TYPE (5) since OpenFle 1.2 and Open vSwitch 1.7
NXM: NXM_OF_ETH_TYPE (3) since Open vSwitch 1.1

The most commonly seen Ethernet frames today use a format datleglnet 117 i n which the last tw
bytes of the Ethernet header specify the Ethertypestich a frame, this field is copied from those bytes of
the headelike :

Ethernet
48 48 1
] dst | src | type]| - -

=0x600

Every Ethernet type has a value 0x600 (1,536) or gréateen the last tev bytes of the Ethernet header
have a alue too small to be an Ethernet type, then #ieesfound there is the total length of the frame in
bytes, excluding the Ethernet head®n 802.2 LLC header typically follows the Ethernet head¥en-
Flow and Open vSwitch only support LLC headers with DSAP and S&#&f and control byteDx03
which indicate that a SAP header follows the LLC headén turn, OpenFla and Open vSwitch only
support a SKP header with @anization0x000000 In such a case, this field is copied from the type field
in the SNAP headelike this:

Ethernet LLC SNAP
48 48 16 8 8 8 24 16
] dst | src | type‘]DSAP| SSAP| cntl ‘] og |[type] -

<0x600 Oxaa Oxaa 0x03 0x000000 =0x600

When an 802.1Q header is inserted after the Ethernet source and destination, this field is populated with the
encapsulated Ethertype, not the 802.1Q Ethertypth @ Ethernet Il inner frame, the result lookselik

this:
Ethernet 802. 1Q Et her}zpe
48 48 16
dst src \]TP|D| TCI \ | type\
0x8100 =0x600

LLC and SNAP encapsulation look ¢ikhis with an 802.1Q header:

Ethernet 802. lQ Et hergzpe LLC SNAP
48 48 16 8 8 24 16
dst src ‘]TPID| TCI ‘] type‘]DSAP|SSAP| cntl ‘] og |[type] -
0x8100 <0x600 Oxaa Oxaa 0x03 0x000000 =0x600

Open vSwitch 2.6.90 34

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

When a packet doegnhatch ay of the header formats described edpen vSwitch and OpenRioset
this field toOx5ff (OFP_DL_TYPE_NOT_ETH_TYPE).

Open vSwitch 2.6.90 35

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

VLAN FIELDS
Summary:

Name Bytes Mask RW? Preregs Support
di_vlan 2 (low 12 Hbts) no yes none
dl_vlan_pcp 1 (low 3 hits) no yes none
vlan_vid 2 (low 12 bts) yes yes none OF1.2+ and OVS 1.7+
vlan_pcp 1 (low 3 hits) no yes VLANVID OFl.2+and OVS 1.7+
vlan_tci 2 yes yes none /S 1.1+

The 802.1Q VLAN header causes more trouble thanotirer 4 bytes in netarking. OpenFlav 1.0, 1.1,
and 1.2+ all treat VLANs diérently Open vSwitch extensions add another variant to the mix. Open
vSwitch reconciles all four treatments as best it can.

VLAN Header Format
An 802.1Q VLAN header consists ofavi6-bit fields:

TPID TCl
16 3 1 12
] Ethertype | PCP |CFI| VID \
0x8100

The first 16 bits of the VLAN headehe TPID (Tag Protocol IDentifier), is an Ethertype. When the VLAN
header is inserted just after the source and destinatio@ Kiliresses in a Ethertype frame, the TPID
senes to identify the presence of the VLAN. The standard TPID, the only one that Open vSwitch supports,
is 0x810Q OpenFlav 1.0 explicitly supports only TPIDx810Q OpenFlav 1.1, hut not earlier or laterer-

sions, also requires support for TPOR88a8(Open vSwitch does not support this). OpenFlo2 through

1.5 do not require support for specific TPIDs (thash vlan headeraction does say that onx8100and
0x88a8should be pushed). No version of OpemFfwovides a way to distinguish or match on the TPID.

The remaining 16 bits of the VLAN headdne TCI (Tag Control Information), is subdded into three

subfields:

. PCP (Priority Control Point), is a 3-bit 802.piority. The lovest priority is value 1, the
second-lowest is value 0, and priority increases from 2 up to highest priority 7.

. CFI (Canonical Format Indicator), is a 1-bit field. On an Ethernet network, its value is
always 0. This led to it later being repurposed under the riaiEi€Drop Eligibility Indi-
cator). By either name, Openkl@and Open vSwitch dohprovide ary way to match or
set this bit.

. VID (VLAN IDentifier), is a 12-bit VLAN. If the VID is 0, then the frame is not part of a

VLAN. In that case, the VLAN header is callegrority tag because it is only meaning-
ful for assigning the frame a priority ID Oxfff (4,095) is reserved.

Seeeth_typefor illustrations of a complete Ethernet frame with 802.1Q tag included.

Multiple VLANs
Open vSwitch can match only a single VLAN heademore than one VLAN header is present, then
eth_typeholds the TPID of the inner VLAN head@pen vSwitch stops parsing the pathfter the inner
TPID, so matching further into the packet (e.g. on the inner TCI or L3 fields) is not possible.

OpenFlav only directly supports matching a single VLAN headerOpenFlav 1.1 or latey one OpenFla
table can match on the outermost VLAN header and pof &md a later OpenFlotable can match on the
next outermost headedpen vSwitch does not support this.

VLAN Field Details
The four variants hee three diferent levels of expressveness: OpenFle 1.0 and 1.1 VLAN matching are
less powerful than OpenRiol.2+ VLAN matching, which is less powerful than Open vSwiteteesion
VLAN matching.

Open vSwitch 2.6.90 36

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

OpenFlow 1.0 VLAN Fields
OpenFlav 1.0 uses tw fields, calleddl_vlan anddl_vlan_pcp, each of which can be eithexact-matched
or wildcarded, to specify VLAN matches:

. When bothdl_vlan anddl_vlan_pcp are wildcarded, the fle matches packets without
an 802.1Q header or withyaB02.1Q header.
. The matchdl_vlan=0xffff causes a flo to match only pac&ts without an 802.1Q header

Such a flev should also wildcardll_vlan_pcp, snce a packt without an 802.1Q header
does not hee a P OpenFlav does not specify what to do if a match on PCP is actually
present, but Open vSwitch ignores it.

. Otherwise, the fl matches only paeks with an 802.1Q headéf dl_vlan is not wild-
carded, then the floonly matches paeks with the VLAN ID specified idl_vlan’s low
12 bits. Ifdl_vlan_pcp is not wildcarded, then the floonly matches paeks with the
priority specified irdl_vlan_pcp's low 3 hts.

OpenFlav does not specify hw to interpret the high 4 bits afl_vlan or the high 5 bits
of dl_vlan_pcp. Open vSwitch ignores them.

OpenFlow 1.1 VLAN Fields
VLAN matching in OpenFlev 1.1 is similar to OpenFil@ 1.0. The one refinement is that wheh vlan
matches orDxfffe (OFVPID_ANY), the flav matches only pa&ks with an 802.1Q headewith ary
VLAN ID. If dl_vlan_pcpis wildcarded, the fl@ matches appaclket with an 802.1Q headeegadless of
VLAN ID or priority. If dl_vlan_pcpis not wildcarded, then the floonly matches packets with the prior
ity specified indl_vlan_pcp's low 3 hts.
OpenFlav 1.1 uses the nam®FPVID_NONE, instead ofOFP_VLAN_NONE, for adl_vlan of Oxffff,
but it has the same meaning.

In OpenFlev 1.1, Open vSwitch reports errd@dFPBMC_BAD_VALUE for an attempt to match on
dl_vlan between 4,096 anakfffd, inclusive, or dl_vlan_pcp greater than 7.

OpenFlow 1.2 VLAN Fields
OpenFlow 1.2+ VLAN ID Field

Name: vian_vid

Width: 16bits (only the least-significant 12 bits may be nonzero)
Format: decimal

Masking: arbitrarybitwise masks

Prerequisites: none

Access: read/write

OpenFlav 1.0: yes(exact match only)

OpenFlav 1.1: yes(exact match only)

OXM: OXM_OF_VLAN_VID (6) since OpenFle 1.2 and Open vSwitch 1.7
NXM: none

The OpenFler standard describes this field as consistingI#+1” bits. On ingress, its value is 0 if no
802.1Q header is present, and otherwise it holds the VLAN VID in its least significant 12 bits, with bit 12
(Ox1000akaOFPVID_PRESENT) aso set to 1. The three most significant bits aneys zero:
OXM_OF_VLAN_VID
3 1 12
| [Pl VLANID |

As a consequence of this fieddbrmat, one may use it to match the VLAN ID in all of the wayalable
with the OpenFlar 1.0 and 1.1 formats, and anfeew ways:

Fully wildcarded
Matches ay packet, that is, one without an 802.1Q header or with an 802.1Q header with
ary TCl value.

Open vSwitch 2.6.90 37

ovs—fields(7)

OpenSwitch Manual ovs—fields(7)

Value 0x0000(OFPVID_NONE), maskOxffff (or no mask)
Matches only packets without an 802.1Q header.

Value 0x100Q mask0x1000
Matches ap packet with an 802.1Q headezgadless of VLAN ID.

Value 0x1009 maskOxffff (or no mask)
Match only packets with an 802.1Q header with VLAN ID 9.

Value 0x1001 mask0x1001
Matches only paaits that hee an 802.1Q header with an odd-numbered VLAN ID.
(This is just an example; one can match ondesired VLAN ID bit pattern.)

OpenFlow 1.2+ VLAN Priority Field

Name: vlan_pcp
Width: 8bits (only the least-significant 3 bits may be nonzero)
Format: decimal
Masking: notmaskable
Prerequisites: VLAN/ID
Access: read/write
OpenFlav 1.0: yes(exact match only)
OpenFlav 1.1: yes(exact match only)
OXM: OXM_OF_VLAN_PCP (7) since OpenFle 1.2 and Open vSwitch 1.7
NXM: none
The 3 least significant bits may be used to match the PCP bits in an 802.1Q Gtemidrits are alays
zero:
OXM_OF_VLAN_VID
5 3
zero | PCP ‘
0

May only be used whewlan_vid is not wildcarded and does notaet match on O (which only matches

when there is no 802.1Q header).
SeeVLAN Comparison Charbelow, for some examples.

Open vSwitch Extension VLAN Field
This extensionvlan_tci can describe more kinds of VLAN matches than the othgants. It is also sim-

pler than the other variants.

VLAN TCI Field

Name: vlan_tci

Width: 16bits

Format: hecadecimal

Masking: arbitrarybitwise masks
Prerequisites: none

Access: read/write

OpenFlav 1.0: yes(exact match only)
OpenFlav 1.1: yes(exact match only)
OXM: none

NXM: NXM_OF_VLAN_TCI (4) since Open vSwitch 1.1

For a packet without an 802.1Q headdhis field is zero. &r a packet with an 802.1Q head#is field is
the TCI with the bit in CFE position (marled P for “present’ below) forced to 1. Thus, for a packet in
VLAN 9 with priority 7, it has the valu@xf009;

NXM_VLAN_TClI
3 1 12

] PCP |P| VID \
7 1 9

Open vSwitch

2.6.90 38

ovs—fields(7)

OpenSwitch Manual ovs—fields(7)

Usage examples:

vlan_tci=0
Match packets without an 802.1Q header.

vlan_tci=0x1000/0x1000
Match packets with an 802.1Q headegadless of VLAN and priority values.

vlan_tci=0xf123
Match packets tagged with priority 7 in VLAN 0x123.

vlan_tci=0x1123/0x1fff
Match packets tagged with VLAN 0x123 (and/aaniority).

vlan_tci=0x5000/0xf000
Match packets tagged with priority 2 (inyaiLAN).
vlan_tci=0/0xfff
Match packets with no 802.1Q header or tagged with VLAN 0 (angbréority).

vlan_tci=0x5000/0xe000
Match packets with no 802.1Q header or tagged withtio? (in ary VLAN).

vlan_tci=0/0xefff
Match packets with no 802.1Q header or tagged with VLAN 0 and priority 0.

SeeVLAN Comparison Charbelow, for more examples.
VLAN Comparison Chart

The following table describes each ofveral possible matching

criteria on 802.1Q header may be

expressed with each variation of the VLAN matching fields:

Criteria OpenFlov 1.0 OpenFlav 1.1 OpenFlov 1.2+ NXM
[1] ????/1??/? ?7???/1,??/? 0000/0000,-- 0000 /0OOOO
[2] fiff /0,??/? ffff /O,?2?/? O0O0O0O/fff ,-- 0000 /ffff
[8] Oxxx/0,2?/1 Oxxx/0,?2?/1 1xxx /ffff - 1xxx [1fff
[4] ?77??/1,0y/0 fffe /0,0y/0 1000/1000,0y z000 /f000
[5] Oxxx/0,0y/0 Oxxx/0,0y/0 1xxx/ffff 0y zxxx /[ffff
[6] (none) (none) 1001/1001,-- 1001 /1001
[7] (none) (none) (none) 3000/3000
[8] (none) (none) (none) 0000 /Offf
[9] (none) (none) (none) 0000 /f000
[10] (none) (none) (none) 0000 /efff

All numbers in the table are expressed in hexadecimal. The columns in the table are interpreted as follows:

Criteria See the list belo

OpenFlav 1.0

OpenFlav 1.1
wwwwi/x,yy/z means VLAN ID match alue wwwwwith wildcard bitx and VLAN
PCP match alueyy with wildcard bitz. ? means that the gn bits are ignored (and
conventionally 0 for wwwwor yy, conventionally 1 for x or z). “(none)” means that
OpenFlav 1.0 (or 1.1) cannot match with these criteria.

OF1.2 xxxxlyyyy,zz meansvlan_vid with value xxxx and maskyyyy , and vlan_pcp
(which is not maskable) withalue zz. —— means thavlan_pcp is omitted. ‘(none)”
means that OpenRAol.2 cannot match with these criteria.

NXM xxxxlyyyy means/lan_tci with valuexxxx and maskyyy .

The matching criteria described by the table are:

Open vSwitch

2.6.90 39

ovs—fields(7)

Open vSwitch

[1]

(2]

3]
[4]

[5]

[6]

[7]

(8]

[9]

[10]

OpenSwitch Manual ovs—fields(7)

Matches ay packet, that is, one without an 802.1Q header or with an 802.1Q header with
ary TCl value.

Matches only packets without an 802.1Q header.

OpenFlav 1.0 doesrt define the behavior ifil_vlan is set toOxffff anddl_vlan_pcp is
not wildcarded. (Open vSwitch vedys ignoresdl_vlan_pcp when dl_vlan is set to
Oxffff.)

OpenFlav 1.1 says explicitly to ignordl_vlan_pcpwhendl_vlan is set toOxffff .

OpenFlav 1.2 doesrt say hawv to interpret a match witllan_vid value 0 and a mask
with OFPVID_PRESENT (0x100Q set to 1 and some other bits in the mask set to 1
also. Open vSwitch interprets it the same way as a ma»k1600

Any NXM match withvlan_tci value 0 and the CFI bit set to 1 in the mask is eaent
to the one listed in the table.

Matches only packets thatVean 802.1Q header with VIDxx (and ay PCP).
Matches only packets thatVean 802.1Q header with PCP(and ay VID).

OpenFlav 1.0 doesrt clearly define the behavior for this case. Open vSwitch implements
it this way.

In the NXM valuez equalsy << 1) | 1.
Matches only packets thatVean 802.1Q header with VIDxx and PCRy.
In the NXM valuez equalsy << 1) | 1.

Matches only packets thatvean 802.1Q header with an odd-numbered VID (ang an
PCP). Only possible with Openkiol.2 and NXM. (This is just an example; one can
match on apdesired VID bit pattern.)

Matches only pacits that hee an 802.1Q header with an odd-numbered PCP (and an
VID). Only possible with NXM. (This is just an example; one can match grdesired
VID bit pattern.)

Matches paasts with no 802.1Q header or with an 802.1Q header with a VID of 0. Only
possible with NXM.

Matches packets with no 802.1Q header or with an 802.1Q header with a PCP of 0. Only
possible with NXM.

Matches paabts with no 802.1Q header or with an 802.1Q header with both VID and
PCP of 0. Only possible with NXM.

2.6.90 40

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

LAYER 2.5: MPLS FIELDS
Summary:
Name Bytes Mask RW? Prereqs Support
mpls_label 4 (low 20 kits) no yes MPLS OF1.2+and OVS 1.11+
mpls_tc 1 (low 3 hits) no yes MPLS OF1.2+and OVS 1.11+
mpls_bos 1 (low 1 hits) no no MPLS OF1.3+and OVS 1.11+
mpls_ttl 1 no yes MPLS OVS 26+

One or more MPLS headers (more commonly cdlLS label} follow an Bhernet type field that speci-
fies an MPLS Ethernet type [RFC 3032]. Ethert@x®847is used for all unicast. Multicast MPLS is
divided into two gecific classes, one of which uses Etherx@847and the othedx8848[RFC 5332].

The most commonwverall packet format is Ethernet I, shown bgl(ENAP encapsulation may be used b
is not ordinarily seen in Ethernet networks):

Ethernet MPLS
48 48 16 20 3 1 8
] dst | src | type ‘] label | TC |S| TTL ‘ e
0x8847

MPLS can be encapsulated inside an 802.1Q heiadehich case the combination looksdikis:

Ethernet 802.1Q Ethertxpe MPLS
48 48 “16 160 16 — 20 31 8
dst src \]TP|D| TCI \] type\] label |Tc |s{ TTL \
0x8100 0x8847

The fields within an MPLS label are:

Label, 20 bits.
An identifier.

Traffic control (TC), 3 bits.
Used for quality of service.

Bottom of stack (BOS), 1 bit (labeled just "&bove).
0 indicates that another MPLS label follows this one.

1 indicates that this MPLS label is the last one in the stack, so that some other protocol
follows this one.

Time to lve (TTL), 8 bits.
Each hop across an MPLS network decrements the TTL by 1. If it reaches 0, thieipack
discarded.

OpenFlav does not mad the MPLS TTL &ailable as a match field, but actions aveila
able to set and decrement the TTL. Open vSwitch 2.6 and later makes the MPLS TTL
awailable as an extension.

MPLS Label Stacks
Unlike the other encapsulations supported by OpemFod Open vSwitch, MPLS labels are routinely
used in “stacks’ two o three deep and sometimegee deeper Open vSwitch currently supports up to
three labels.

OpenFlav only supports matching on the outermost MPLS label aaren time. To match on the second
label, one must firstgop” the outer label and advance to another Opemfdble, where the inner label
may be matched.olmatch on the third label, one must pop the twter labels, and so on. The Open Net-
working Foundation is considering support for directly matching on multiple MPLS labels for OpenFlo
1.6.

Open vSwitch 2.6.90 41

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

MPLS Inner Protocol
Unlike dl other forms of encapsulation that Open vSwitch and Open&ipport, an MPLS label does not
indicate what inner protocol it encapsulates. Different depémts determine the inner protocol infeliént

ways [RFC 3032]:

A few resered label values do indicate an inner protocol. Label 0, the “IPv4 Explicit
NULL Label; i ndicates inner IPv4. Label 2, tHEPv6 Explicit NULL Label; i ndicates
inner 1Pv6.

Some deployments use a single inner protocol consistently.
In some deployments, the inner protocol must be inferred from the innermost label.

In some deplpments, the inner protocol must be inferred from the innermost label and
the encapsulated data, e.g. to distinguish between inner IPv4 and IPv6 based on whether
the first nibble of the inner protocol data drer 6. OpenFlav and Open vSwitch do not
currently support these cases.

Field Details
MPLS Label Field
Name: mpls_label
Width: 32bits (only the least-significant 20 bits may be nonzero)
Format: decimal
Masking: notmaskable
Prerequisites: MPLS
Access: read/write
OpenFlav 1.0: notsupported
OpenFlav 1.1: yes(exact match only)
OXM: OXM_OF_MPLS _LABEL (34) since OpenFie 1.2 and Open vSwitch 1.11
NXM: none

The least significant 20 bits hold the “labdield from the MPLS label. Other bits are zero:
OXM_OF_MPLS_LABEL

12 20
’ zero | label
0

Most label values arevailable for ary use by deployments. Values under 16 are reserved.
MPLS Traffic Class Field

Name: mpls_tc

Width: 8bits (only the least-significant 3 bits may be nonzero)

Format: decimal

Masking: notmaskable

Prerequisites: MPLS

Access: read/write

OpenFlav 1.0: notsupported

OpenFlav 1.1: yes(exact match only)

OXM: OXM_OF_MPLS_TC (35) since OpenFle 1.2 and Open vSwitch 1.11
NXM: none

The least significant 3 bits hold the TC field from the MPLS label. Other bits are zero:
OXM_OF_MPLS_TC

5 3
zero | TC ‘
0

Open vSwitch

2.6.90 42

ovs—fields(7)

OpenSwitch Manual ovs—fields(7)

This field is intended for use for Quality of Service (QoS) and Explicit Congestion Notification purposes,
but its particular interpretation is deployment specific.

Before 2009, this field was named EXP and reserved for experimental use [RFC 5462].
MPLS Bottom of Stack Field

Name:
Width:
Format:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:

OXM:
NXM:

mpls_bos
8bits (only the least-significant 1 bits may be nonzero)
decimal
notmaskable
MPLS
read-only
notsupported
notsupported
OXM_OF_MPLS BOS (36) since OpenFie 1.3 and Open vSwitch 1.11
none

The least significant bit holds the BOS field from the MPLS label. Other bits are zero:
OXM_OF_MPLS_BOS

7

Zero

1
[Bos

This field is useful as part of processing a series of incoming MPLS labelswAthét includes a
pop_mplsaction should generally match mpls_bos

Whenmpls_bosis 1, there is another MPLS label following this one, so the Ethertype
passed topop_mpls should be an MPLS Ethertype. Forxaeple: table=0,
dl_type=0x8847, mpls_bos=1, actions=pop_mpls:0x8847, goto_table:1

When mpls_bosis 0, this MPLS label is the last one, so the Ethertype passed to
pop_mpls should be a non-MPLS Ethertype such as IPv4. Kamele: table=1,
dl_type=0x8847, mpls_bos=0, actions=pop_mpls:0x0800, goto_table:2

MPLS Time-to-Live Feld

Name:
Width:
Format:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:

OXM:
NXM:

mpls_ttl
8bits
decimal
notmaskable
MPLS
read/write
notsupported
notsupported
none
NXM_NX_MPLS_TTL (30) since Open vSwitch 2.6

Holds the 8-bit time-to-lie field from the MPLS label:

NXM_NX_MPLS_TTL
N _

8
TTL

Open vSwitch

2.6.90 43

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

LAYER 3: IPV4 AND IPV6 FIELDS

IPv4 Specific Fields

Summary:

Name Bytes Mask RW? Prereqs Support

ip_src akanw_src 4 yes yes IPv4 OF1.2+and OVS 1.1+
ip_dstakanw_dst 4 yes yes |IPv4 OF1.2+and OVS 1.1+
ipv6_src 16 yes yes IPv6 OF1.2+ and OVS 1.1+
ipv6_dst 16 yes yes IPv6 OF1.2+ and OVS 1.1+
ipv6_label 4 (low 20 bts) yes yes IPv6 OF1.2+ and OVS 1.4+
nw_proto akaip_proto 1 no no IPv4/IPv6 OF1.2-and OVS 1.1+
nw_ttl 1 no yes IPv4/IPv6 OVS 14+

ip_frag 1 (low 2 hits) yes no IPv4/IPv6 OVS 13+

nw_tos 1 no yes IPv4/IPv6 OVS 11+

ip_dscp 1 (low 6 hits) no yes IPv4/IPv6 OF1.2+ and OVS 1.7+
nw_ecnakaip_ecn 1 (low 2 hits) no yes IPv4/IPv6 OF1.2+ and OVS 1.4+

These fields are applicable only to IPv4 flows, that is, flows that match on the IPv4 Ethz@§pe
IPv4 Source Address Field

Name: ip_src (akanw_src)
Width: 32bits
Format: IPv4
Masking: arbitranbitwise masks
Prerequisites: IPv4
Access: read/write
OpenFlav 1.0: yes(CIDR match only)
OpenFlav 1.1: yes
OXM: OXM_OF_IPV4_SRC (11) since OpenFi® 1.2 and Open vSwitch 1.7
NXM: NXM_OF_IP_SRC (7) since Open vSwitch 1.1
The source address from the IPv4 header:
Ethernet IPv4

48 48 1 8 32 3

] dst | src | type‘] |proto| src | dst ‘

800

For historical reasons, in an ARP or RARPwW|Open vSwitch interprets matches ow_src as actually
referring to the ARP SPA.

IPv4 Destination Address Field

Name: ip_dst (akanw_dsf)
Width: 32bits
Format: IPv4
Masking: arbitranbitwise masks
Prerequisites: IPv4
Access: read/write
OpenFlav 1.0: yes(CIDR match only)
OpenFlav 1.1: yes
OXM: OXM_OF_IPV4_DST (12) since OpenFle 1.2 and Open vSwitch 1.7
NXM: NXM_OF_IP_DST (8) since Open vSwitch 1.1
The destination address from the IPv4 header:
Ethernet IPv4

48 48 8 32 3

] dst | src | type‘] |proto| src | dst | -

Open vSwitch

800

2.6.90 44

ovs—fields(7)

OpenSwitch Manual ovs—fields(7)

For historical reasons, in an ARP or RARPw|dOpen vSwitch interprets matches nw_dst as actually
referring to the ARP TPA.

IPv6 Specific Fields

These fields apply only to IPv6 flows, that is, flows that match on the IPv6 Eth@xg@ed
IPv6 Source Address Field

Name: ipv6_src
Width: 128bits
Format: IPv6
Masking: arbitranybitwise masks
Prerequisites: IPv6
Access: read/write
OpenFlav 1.0: notsupported
OpenFlav 1.1: notsupported
OXM: OXM_OF_IPV6_SRC (26) since OpenFi® 1.2 and Open vSwitch 1.1
NXM: NXM_NX_IPV6_SRC (19) since Open vSwitch 1.1
The source address from the IPv6 header:
Ethernet IPv6

48 48 8 128 128

] dst | src | type ‘] . |next| src dst
0x86dd

Open vSwitch 1.8 added support for bitwise matching; earlier versions supported only CIDR masks.
IPv6 Destination Address Field

Name: ipv6_dst
Width: 128bits
Format: IPv6
Masking: arbitranybitwise masks
Prerequisites: IPv6
Access: read/write
OpenFlav 1.0: notsupported
OpenFlav 1.1: notsupported
OXM: OXM_OF_IPV6_DST (27) since OpenFle 1.2 and Open vSwitch 1.1
NXM: NXM_NX_IPV6_DST (20) since Open vSwitch 1.1
The destination address from the IPv6 header:
Ethernet IPv6

48 48 8 128 128

] dst | src | type ‘] . |next| src dst
0x86dd

Open vSwitch 1.8 added support for bitwise matching; earlier versions supported only CIDR masks.
IPv6 Flow Label Field

Name:

Width:
Format:
Masking:
Prerequisites:
Access:

Open vSwitch

ipv6_label
32bits (only the least-significant 20 bits may be nonzero)
hecadecimal
arbitranybitwise masks
IPv6
read/write

2.6.90 45

ovs—fields(7)

OpenFlav 1.0:
OpenFlav 1.1:

OXM:
NXM:

OpenSwitch Manual ovs—fields(7)

notsupported

notsupported

OXM_OF_IPV6_FLABEL (28) since OpenHF® 1.2 and Open vSwitch 1.7
NXM_NX_IPV6_LABEL (27) since Open vSwitch 1.4

The least significant 20 bits hold thevfltabel field from the IPv6 head@ther bits are zero:
OXM_OF_IPV6_FLABEL

12 20
’ zero | label
0

IPv4/IPv6 Fields

These fieldsxst with at least approximately the same meaning in both IPv4 and IPv6 ysardhtecated
as a single field for matching purposesyAlow that matches on the IPv4 Etherty@ed800or the IPv6
EthertypeOx86dd may match on these fields.

IPv4/v6 Protocol Field

Name:
Width:
Format:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:

OXM:
NXM:

nw_proto (akaip_proto)
8bits
decimal
notmaskable
IPv4/IPv6
read-only
yes(exact match only)
yes(exact match only)
OXM_OF_IP_PROTO (10) since OpenFip 1.2 and Open vSwitch 1.7
NXM_OF_IP_PROTO (6) since Open vSwitch 1.1

Matches the IPv4 or IPv6 protocol type.

For historical reasons, in an ARP or RARPw|dpen vSwitch interprets matches mw_proto as actually

referring to the ARP opcode. The ARP opcode is a 16-bit field, so for matching purposes ARP opcodes
greater than 255 are treated as 0; this works adequately because in practice ARP and RARP only use

opcodes 1 through 4.
IPv4/v6 TTL/Hop Limit Field

Name:
Width:
Format:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:

OXM:
NXM:

nw_ttl
8bits
decimal
notmaskable
IPv4/IPv6
read/write
notsupported
notsupported
none
NXM_NX_IP_TTL (29) since Open vSwitch 1.4

IPv4/v6 Fragment Bitmask Field

Name:
Width:
Format:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:

Open vSwitch

ip_frag
8bits (only the least-significant 2 bits may be nonzero)
frag
arbitranybitwise masks
IPv4/IPv6
read-only
notsupported

2.6.90 46

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

OpenFlav 1.1: notsupported
OXM: none
NXM: NXM_NX_IP_FRAG (26) since Open vSwitch 1.3

Specifies what kinds of IP fragments or non-fragments to match. lbe for this field is most cos
niently specified as one of the following:

no Match only non-fragmented packets.

yes Matches all fragments.

first Matches only fragments with offset 0.

later ~ Matches only fragments with nonzero offset.

not_later
Matches non-fragmented packets and fragments with zero offset.

The field is internally formatted as 2 bits: bit 0 is 1 for an IP fragment wittofset (and otherwise 0),
and bit 1 is 1 for an IP fragment with nonzero offset (and otherwise ®)ptik
NXM_NX_IP_FRAG
6 1 1
zero |Iater| any‘

Even though 2 bits lva 4 pssible values, this field only uses 3 of them:

. A packet that is not an IP fragment has value 0.

. A packet that is an IP fragment withfeét O (the first fragment) has bit O set and thus
value 1.

. A packet that is an IP fragment with nonzero offset has bits 0 and 1 set and thus value 3.

The switch may reject matches against values that cemn ayppear.

It is important to understand Wwahis field interacts with the Openkidragment handling mode:

. In OFPC_FRAG_DROP mode, the OpenHm switch drops all IP fragments before yhe
reach the flov table, so eery packet that is\ailable for matching will hae value 0 in
this field.

. Open vSwitch does not impleme@FPC_FRAG_REASM mode, lut if it did then IP

fragments wuld be reassembled before ytheeached the flu table and againvery
packet gailable for matching would alays have value 0.

. In OFPC_FRAG_NORMAL mode, all three values are possible, but OpemBlO says
that fragments’ transport ports arevays 0, &en for the first fragment, so this does not
provide much extra information.

. In OFPC_FRAG_NX_MATCH mode, all three values are possible. For fragments with
offset 0, Open vSwitch makes L4 header informatiaiable.

Thus, this field is likely to be most useful for an Open vSwitch switch configured in
OFPC_FRAG_NX_MATCH mode. See the description of thet-frags command inovs—ofctl(8), for
more details.

IPv4/IPv6 TOS Fields
IPv4/v6 DSCP (Bits 2-7) Field

Name: nw_tos
Width: 8bits
Format: decimal
Masking: notmaskable

Open vSwitch 2.6.90 47

ovs—fields(7)

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:

OXM:
NXM:

OpenSwitch Manual

IPv4/IPv6
read/write
yes(exact match only)
yes(exact match only)
none
NXM_OF_IP_TOS (5) since Open vSwitch 1.1

NXM_OF_IP_TOS
-

6

2

DSCP

|zero‘

0

IPv4/v6 DSCP (Bits 0-5) Field

Name:
Width:

Format:

Masking:
Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:

OXM:
NXM:

ip_dscp
8bits (only the least-significant 6 bits may be nonzero)
decimal
notmaskable
IPv4/IPv6
read/write
yes(exact match only)
yes(exact match only)
OXM_OF_IP_DSCP(8) since OpenFlw 1.2 and Open vSwitch 1.7
none

OXM_OF_IP_DSCP
-

2

’zero|

DSCP

IPv4/v6 ECN Field

Name: nw_ecn(akaip_ecn
Width: 8bits (only the least-significant 2 bits may be nonzero)
Format: decimal
Masking: notmaskable
Prerequisites: IPv4/1Pv6
Access: read/write
OpenFlav 1.0: notsupported
OpenFlav 1.1: notsupported
OXM: OXM_OF_IP_ECN (9) since OpenFls 1.2 and Open vSwitch 1.7
NXM: NXM_NX_IP_ECN (28) since Open vSwitch 1.4

OXM_OF_IP_ECN

6 2
zero |ECN‘

Open vSwitch

2.6.90

ovs—fields(7)

48

ovs—fields(7)

OpenSwitch Manual

LAYER 3: ARP FIELDS

Summary:
Name Bytes Mask RW? Prereqs Support
arp_op 2 no yes ARP OF1.2+and OVS 1.1+
arp_spa 4 yes yes ARP OF1.2+and OVS 1.1+
arp_tpa 4 yes yes ARP OF1.2+and OVS 1.1+
arp_sha 6 yes yes ARP OF1.2+and OVS 1.1+
arp_tha 6 yes yes ARP OF1.2+and OVS 1.1+
Ethernet ARP
48 48 16 16 16 8 8 16 48 16 48 16

] dst | src | type‘]hrd| pro|h|n|p|n|op| sha |spa| tha |tpa‘
0x806 1 0x8006 4

ARP Opcode Field

Name: arp_op

Width: 16bits

Format: decimal

Masking: notmaskable

Prerequisites: ARP

Access: read/write

OpenFlav 1.0: yes(exact match only)

OpenFlav 1.1: yes(exact match only)

OXM: OXM_OF_ARP_OP (21) since OpenFie 1.2 and Open vSwitch 1.7
NXM: NXM_OF_ARP_OP (15) since Open vSwitch 1.1
ARP Source IPv4 Address Field

Name: arp_spa

Width: 32bits

Format: IPv4

Masking: arbitranbitwise masks

Prerequisites: ARP

Access: read/write

OpenFlav 1.0: yes(CIDR match only)

OpenFlav 1.1: yes

OXM: OXM_OF_ARP_SPA(22) since OpenFi® 1.2 and Open vSwitch 1.7
NXM: NXM_OF_ARP_SPA(16) since Open vSwitch 1.1
ARP Target IPv4 Address Field

Name: arp_tpa

Width: 32bits

Format: IPv4

Masking: arbitranbitwise masks

Prerequisites: ARP

Access: read/write

OpenFlav 1.0: yes(CIDR match only)

OpenFlav 1.1: yes

OXM: OXM_OF_ARP_TPA (23) since OpenFle 1.2 and Open vSwitch 1.7
NXM: NXM_OF_ARP_TPA (17) since Open vSwitch 1.1
ARP Source Ethernet Address Field

Name: arp_sha

Width: 48bits

Format: Ethernet

Open vSwitch

2.6.90

ovs—fields(7)

49

ovs—fields(7)

Masking:
Prerequisites:
Access:
OpenFlav 1.0:
OpenFlav 1.1:

OXM:
NXM:

OpenSwitch Manual

arbitrarybitwise masks
ARP
read/write
notsupported
notsupported
OXM_OF_ARP_SHA (24) since OpenFie 1.2 and Open vSwitch 1.7
NXM_NX_ARP_SHA (17) since Open vSwitch 1.1

ARP Target Ethernet Address Field

Name:
Width:

Format:
Masking:
Prerequisites:
Access:
OpenFlav 1.0:
OpenFlav 1.1:

OXM:
NXM:

Open vSwitch

arp_tha
48bits
Ethernet
arbitranybitwise masks
ARP
read/write
notsupported
notsupported
OXM_OF_ARP_THA (25) since OpenFi® 1.2 and Open vSwitch 1.7
NXM_NX_ARP_THA (18) since Open vSwitch 1.1

2.6.90

ovs—fields(7)

50

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

LAYER 4: TCP, UDP, AND SCTP FIELDS

Summary:
Name Bytes Mask RW? Prereqs Support
tcp_srcakatp_src 2 yes yes TCP OF1.2+#and OVS 1.1+
tcp_dstakatp_dst 2 yes yes TCP OF1.2+#and OVS 1.1+
tcp_flags 2 (low 12 bts) yes no TCP OF1.3+ and OVS 2.1+
udp_src 2 yes yes UDP OF1.2+and OVS 1.1+
udp_dst 2 yes yes UDP OF1.2+and OVS 1.1+
sctp_src 2 yes yes SCTP OF1.24and OVS 2.0+
sctp_dst 2 yes yes SCTP OF1.24and OVS 2.0+
For matching purposes, no distinction is made whether these protocols are encapsulated within 1Pv4 or
IPv6.

TCP

Ethernet IPv4 TCP
48 48 16 8 32 32 6 16 12
] dst | src | type‘] |protq src | dst ‘]srqull |f|agsi ‘
0x800 6

TCP Source Port Field

Name: tcp_src (akatp_src)
Width: 16bits

Format: decimal

Masking: arbitranbitwise masks
Prerequisites: TCP

Access: read/write

OpenFlav 1.0: yes(exact match only)

OpenFlav 1.1: yes(exact match only)

OXM: OXM_OF_TCP_SRC(13) since OpenFlg 1.2 and Open vSwitch 1.7
NXM: NXM_OF_TCP_SRC (9) since Open vSwitch 1.1

Open vSwitch 1.6 added support for bitwise matching.
TCP Destination Port Field

Name: tcp_dst (akatp_dst)
Width: 16bits

Format: decimal

Masking: arbitranbitwise masks
Prerequisites: TCP

Access: read/write

OpenFlav 1.0: yes(exact match only)

OpenFlav 1.1: yes(exact match only)

OXM: OXM_OF_TCP_DST (14) since OpenFie 1.2 and Open vSwitch 1.7
NXM: NXM_OF_TCP_DST (10) since Open vSwitch 1.1

Open vSwitch 1.6 added support for bitwise matching.
TCP Flags Field

Name: tcp_flags

Width: 16bits (only the least-significant 12 bits may be nonzero)
Format: TCPflags

Masking: arbitranbitwise masks

Prerequisites: TCP

Access: read-only

OpenFlav 1.0: notsupported

Open vSwitch 2.6.90 51

ovs—fields(7) OpenSwitch Manual ovs—fields(7)

OpenFlav 1.1: notsupported

OXM: ONFOXM_ET_TCP_FLAGS (42) since OpenFle® 1.3 and Open vSwitch 2.4;
OXM_OF_TCP_FLAGS (42) since OpenFle 1.5 and Open vSwitch 2.3

NXM: NXM_NX_TCP_FLAGS (34) since Open vSwitch 2.1

This field holds the TCP flags. TCP currently defines 9 flag bits. An additional 3 bits aredefervmore
information, see [RFC 793], [RFC 3168], and [RFC 3540].

Matches on this field are most eeniently written in terms of symbolic names Vg in the diagram
belov), each preceded by eitherfor a flag that must be set, effor a flag that must be unset, withouyan
other delimiters between the flags. Flags not mentioned are wildcarded. efample,
tcp,tep_flags=+syn—ackmatches TCP SYNs that are nd@i&s. Matches can also be writtenflaggmask
whereflagsandmaskare 16-bit numbers in decimal or in hexadecimal prefixe@ixby

The flag bits are:

reserved later RFCs RFC 793
4 1 1 1 1 1 1 1 1 1 1 1 1
zero | 800 400 | 200| NS |CWR| ECE|URG|ACK|PSH|RST|SYN] FIN |
UDP
Ethernet IPv4 UDP
48 48 8 32 32~ 16 16
] dst | src | type‘] |protq src | dst ‘]srqull ‘
800 17

UDP Source Port Field

Name:
Width:
Format:
Masking:

Prerequisites:

Access:
OpenFlav 1.0:
OpenFlav 1.1:
OXM:

NXM:

udp_src
16bits
decimal
arbitranybitwise masks
UDP
read/write
yes(exact match only)
yes(exact match only)
OXM_OF_UDP_SRC(15) since OpenHm 1.2 and Open vSwitch 1.7
NXM_OF_UDP_SRC(11) since Open vSwitch 1.1

UDP Destination Port Field

Name: udp_dst
Width: 16bits
Format: decimal
Masking: arbitrarybitwise masks
Prerequisites: UDP
Access: read/write
OpenFlav 1.0: yes(exact match only)
OpenFlav 1.1: yes(exact match only)
OXM: OXM_OF_UDP_DST(16) since OpenFle 1.2 and Open vSwitch 1.7
NXM: NXM_OF_UDP_DST (12) since Open vSwitch 1.1
SCTP
Ethernet IPv4 SCTP
48 48 16 8 32 32~ 16 16
] dst | src | type ‘] . |protq src | dst ‘]srqull . ‘ e
0x800 17
Open vSwitch 2.6.90 52

ovs—fields(7)

SCTP Source Port Field

Name:
Width:
Format:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:

OXM:
NXM:

sctp_src
16bits
decimal

OpenSwitch Manual

arbitranybitwise masks

SCTP
read/write
notsupported

yes(exact match only)

OXM_OF_SCTP_SRC(17) since OpenFle 1.2 and Open vSwitch 2.0

none

SCTP Destination Port Field

Name:
Width:
Format:
Masking:

Prerequisites:

Access:

OpenFlav 1.0:
OpenFlav 1.1:

OXM:
NXM:

Open vSwitch

sctp_dst
16bits
decimal

arbitranybitwise masks

SCTP
read/write
notsupported

yes(exact match only)

OXM_OF_SCTP_DST(18) since OpenFi® 1.2 and Open vSwitch 2.0

none

2.6.90

ovs—fields(7)

53

ovs—fields(7)

OpenSwitch Manual

LAYER 4: ICMPV4 AND ICMPV6 FIELDS

ovs—fields(7)

Summary:
Name Bytes Mask RW? Prereqgs Support
icmp_type 1 no yes ICMPV4 OF1.2+ and OVS 1.1+
icmp_code 1 no yes ICMPV4 OF1.2+ and OVS 1.1+
icmpv6_type 1 no yes ICMPV6 OF1.2+ and OVS 1.1+
icmpv6_code 1 no yes ICMPV6 OF1.2+and OVS 1.1+
nd_target 16 yes yes ND OF1.2+and OVS 1.1+
nd_sll 6 yes yes ND solicit OF1.2+and OVS 1.1+
nd_tll 6 yes yes NDadwert OF1.2+and OVS 1.1+
ICMPv4
Ethernet IPv4 ICMPV4
48 48 1 8 32 32 8 8
] dst | src | type ‘] .. |protq src | dst ‘]type|code}
0x800 1

ICMPv4 Type Field

Name:

Width:
Format:
Masking:
Prerequisites:
Access:
OpenFlav 1.0:
OpenFlov 1.1:
OXM:

NXM:

icmp_type
8bits
decimal
notmaskable
ICMPV4
read/write
yes(exact match only)
yes(exact match only)
OXM_OF_ICMPV4_TYPE (19) since OpenFip 1.2 and Open vSwitch 1.7
NXM_OF _ICMP_TYPE (13) since Open vSwitch 1.1

ICMPv4 Code Field

ICMPV6

Name: icmp_code
Width: 8hits
Format: decimal
Masking: notmaskable
Prerequisites: ICMPv4
Access: read/write
OpenFlav 1.0: yes(exact match only)
OpenFlav 1.1: yes(exact match only)
OXM: OXM_OF_ICMPV4_CODE (20) since OpenFie 1.2 and Open vSwitch 1.7
NXM: NXM_OF_ICMP_CODE (14) since Open vSwitch 1.1
Ethernet IPv6 ICMPv6
48 48 1 8 128 12 8 8
] dst | src | type ‘] . | next| src | dst ‘]type|code}
0x800 58

ICMPV6 Type Field

Name:

Width:
Format:
Masking:
Prerequisites:
Access:

Open vSwitch

icmpv6_type
8bhits
decimal
notmaskable
ICMPvV6
read/write

2.6.90

54

ovs—fields(7)

OpenSwitch Manual

OpenFlav 1.0: notsupported
OpenFlav 1.1: notsupported
OXM: OXM_OF_ICMPV6_TYPE (29) since OpenFip 1.2 and Open vSwitch 1.7
NXM: NXM_NX_ICMPV6_TYPE (21) since Open vSwitch 1.1
ICMPv6 Code Field
Name: icmpv6_code
Width: 8bits
Format: decimal
Masking: notmaskable
Prerequisites: ICMPV6
Access: read/write
OpenFlav 1.0: notsupported
OpenFlav 1.1: notsupported
OXM: OXM_OF_ICMPV6_CODE (30) since OpenFie 1.2 and Open vSwitch 1.7
NXM: NXM_NX_ICMPV6_CODE (22) since Open vSwitch 1.1
ICMPV6 Neignhbor Discovery
Ethernet IPv6 ICMPV6 ICMPv6 ND
48 48 1 8 128 12 8 8 128
] dst | src | type ‘] . | next| src | dst ‘]type|code* ‘]targeqoption .. }
0x800 58 135/1360

ICMPv6 Neighbor Discovery Target IPv6 Field

Name:
Width:
Format:
Masking:

Prerequisites:

Access:
OpenFlav 1.0:
OpenFlav 1.1:
OXM:

NXM:

nd_target
128hits
IPv6
arbitranybitwise masks
ND
read/write
notsupported
notsupported
OXM_OF_IPV6_ND_TARGET (31) since OpenF® 1.2 and Open vSwitch 1.7
NXM_NX_ND_TARGET (23) since Open vSwitch 1.1

ICMPv6 Neighbor Discovery Source Ethernet Address Field

Name:

Width:
Format:
Masking:
Prerequisites:
Access:
OpenFlav 1.0:
OpenFlav 1.1:
OXM:

NXM:

nd_sll
48bits
Ethernet
arbitranybitwise masks
NBolicit
read/write
notsupported
notsupported
OXM_OF_IPV6_ND_SLL (32) since OpenFle 1.2 and Open vSwitch 1.7
NXM_NX_ND_SLL (24) since Open vSwitch 1.1

ICMPv6 Neighbor Discovery Target Ethernet Address Field

Name:

Width:
Format:
Masking:
Prerequisites:
Access:

Open vSwitch

nd_tll
48bits
Ethernet
arbitrarybitwise masks
NRdvert
read/write

2.6.90

ovs—fields(7)

55

ovs—fields(7)

OpenSwitch Manual ovs—fields(7)

OpenFlav 1.0: notsupported
OpenFlav 1.1: notsupported

OXM: OXM_OF_IPV6_ND_TLL (33) since OpenFip 1.2 and Open vSwitch 1.7
NXM: NXM_NX_ND_TLL (25) since Open vSwitch 1.1
REFERENCES

Open vSwitch

CasadoM. Casado, M. J. Freedman, J. Pettit, J. Luo, N. &, and S. Shemk, “Ethane:
Taking Control of the EnterpriseC omputer Communications RewgOctober 2007.

EXT-56
J. Tonsing, ‘Permit one of a set of prerequisites to applg. dont preclude non-Ether
net medid, [Mttps://rs.opennetworking.org/bugs/browse/EXT-56 O
(ONF members only).
EXT-112
J. Tourrilhes, “Support non-Ethernet packets throughout the pigelineps://
rs.opennetworking.org/bugs/browse/EXT-112 [XONF members only).
EXT-134
J. Tourrilhes, “Match first nibble of the MPLS payldadittps://
rs.opennetworking.org/bugs/browse/EXT-134 [XONF members only).
IEEE OUI
IEEE Standards Association, “MAAddress Block Large (MA-L), [https://
standards.ieee.org/develop/regauth/oui/index.html O
OpenFlav 1.0.1
Open Networking Foundation, “Openkwitch Errata, Version 1.01June 2012.
OpenFlav 1.1

OpenFlav Consortium, ‘OpenFlov Switch Specification Version 1.1.0 Implemented
(Wire Protocol 0x02}),F ebruary 2011.

OpenFlav 1.5
Open Networking FoundationtOpenFlav Switch Specification Version 1.5.0 (Protocol
version 0x06), D ecember 2014.

OpenFlav Extensions 1.3.x Package 2
Open Networking Foundation;OpenFlav Extensions 1.3.x Package” 2D ecember
2013.

TCP Flags Match Field Extension
Open Networking Foundation, “TCP flags match field Extensibrgcember 2014. In
[OpenFlav Extensions 1.3.x Package 2].

Pepelnjak
I. Pepelnjak, “OpenFhly and Fermi Estimates,[ittp://blog.ipspace.net/
2013/09/openflow-and-fermi-estimates.html O
RFC 793
“ Transmission Control Protocblthttp://www.ietf.org/rfc/rfc793.txt mk
RFC 3032
E. Rosen, D. Tappan, G. Fedovk Y. Rekhter D. Farinacci, T Li, and A. Conta,
“MPLS Label Stack Encodirig[http://www.ietf.org/rfc/rfc3032.txt O
RFC 3168
K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit Congestion Notifi-
cation (ECN) to 1P [https://tools.ietf.org/html/rfc3168 O
RFC 3540
N. Spring, D. Wtherall, and D. Ely"“Robust Explicit Congestion Notification (ECN)
Signaling with Nonces, (https://tools.ietf.org/html/rfc3540 O

2.6.90 56

ovs—fields(7)

AUTHORS

OpenSwitch Manual ovs—fields(7)

RFC 4632
V. Fuller and T Li, “Classless Intedomain Routing (CIDR): The Internet Address
Assignment and Agggstion Plan [ttps://tools.ietf.org/html/
rfc4632 0O

RFC 5462
L. Andersson and R. AsatiMultiprotocol Label Switching (MPLS) Label Stack Entry:
“ EXP” Field Renamed to “Traffic ClasdField,” [http://www.ietf.org/rfc/
rfc5462.txt O

RFC 6830
D. Farinacci, VFuller, D. Meyer, and D. Lewis, “The Locator/ID Separation Protocol
(LISP); [http://www.ietf.org/rfc/rfc6830.txt O

Srinivasan

V. Srinivasan, S. Suriyand G. \amghese, ‘Packet Classification using uple Space
SearcH, SIGCOMM 1999.

Pagiamtzis
K. Pagiamtzis and A. Sheikholeslami;ontent-addressable memory (CAM) circuits and
architectures: A tutorial and sy’ | EEE Journal of Solid-State Circuits, vol. 41, no. 3,
pp. 712-727, March 2006.

VXLAN Group Policy Option
M. Smith and L. Kreegef V XLAN Group Poligy Option” | nternet-Draft. [https://
tools.ietf.org/html/draft-smith-vxlan-group-policy O

Ben Pfaff, with advice from Justin Pettit and Jean Tourrilhes.

Open vSwitch

2.6.90 57

