

P4 and Open vSwitch

Ben Pfaff
blp@nicira.com

Open vSwitch Commiter

Open vSwitch Architecture

kernel moduleovs-vswitchd
Netlink

us
er

ke
rn

el

VM 1 VM nVMs

Controller

Hypervisor

...

ovsdb-server

VM 2

OVSDB

NICs

OVSDB

O
pe

nF
lo

w

Where is Open vSwitch Used?

● Broad support:
– Linux, FreeBSD, NetBSD, Windows, ESX

– KVM, Xen, Docker, VirtualBox, Hyper-V, …

– OpenStack, CloudStack, OpenNebula, (OVN!), …

● Widely used:
– Most popular OpenStack networking backend

– Default network stack in XenServer

– 1,440 hits in Google Scholar

– Thousands of subscribers to OVS mailing lists

The Big Picture

● Most releases of OVS add support for new fields or protocols.
● Every new field or protocol requires changes throughout OVS.
● Every change to OVS requires building, distributing, and

installing a new version of OVS.
● Every field needs coordination with controller authors (+ONF).
● (Sometimes reasonable people disagree about a field, too!)
● It would be great to avoid all of this!

The Big Vision

Requirements
● Reconfigure protocols and fields without recompiling
● Maintain or boost performance
● Maintain OVS backward compatibility
● Maintain (and extend) OpenFlow compatibility

Nice-to-Have
● Minimize dependencies.
● Support both OVS software datapaths (kernel and user/DPDK).
● Avoid making OVS modal.
● Define “legacy” features in terms of new interface
● Avoid fragmenting P4 spec.

The Easy Part

● Define OVS fields and protocols with P4 header_type, header,
parsers (~300 lines of P4 for everything in OVS).

● Map these fields and protocols to OpenFlow “OXM” matches
– by naming (e.g. name your eth_dst field OXM_8000_03)

– with an external mapping table

– with special comments in the P4 source code

– by defining OXM matches as metadata and storing into them

The Harder Part: OVS Linux datapath

● How do we make openvswitch.ko extensible?
● Probably not acceptable to support P4 directly in kernel.
● Kernel already has an extensibility mechanism, eBPF:

– 64-bit hardware-like virtual machine.
– Extended form of BPF (used e.g. for tcpdump).
– Safe for untrusted user code via verifier.
– JIT for high performance on popular archs (e.g. x86, ARM).

● eBPF is a suitable compiler target for P4! (Size could be an issue: 1415/4096.)
● (User/DPDK datapath can use any approach we like.)

Unsolved Conceptual Issues in P4-OVS Binding

● Weird fields
– Transforming P4 to OpenFlow is not too hard

– Transforming back from OpenFlow to P4 might need help

– e.g. OVS treats CFI bit in VLANs as “present” bit

● Inserting and removing fields
– VLAN and other encapsulation push/pop

– MPLS requires reparse after pop

The Prototype

● P4 syntax lexer (complete language)
● P4 syntax parser (header_type, header, parser)
● ovs.p4: P4 for OVS supported protocols and fields (minus IPv6)
● Compiler that accepts P4 and emits eBPF (just what ovs.p4 needs)
● eBPF interpreter for OVS userspace

– (would be replaced by JIT for production use)

● Replacement flow parsing routine that invokes eBPF
● Total: 5,500 new lines of code written over about 1 week

The Worst Part of the Prototype:
Mapping P4 to OpenFlow via metadata

OVS flow definition

struct flow {

 ...

 …

 uint8_t eth_src[6];

 uint8_t eth_dst[6];

 ovs_be16 eth_type;

 …

P4 metadata definition

header_type flow_t {

 fields {

 …

 eth_src : 48;

 eth_dst : 48;

 eth_type : 16;

 …

P4 parser mapping

header_type flow_t flow;

parser eth {

 extract(l2_eth);

 set_metadata(flow.eth_src,

 l2_eth.eth_src);

 set_metadata(flow.eth_dst,

 l2_eth.eth_dst);

 ...

Future Work

● Most important: solve unresolved questions in P4-OVS and P4-
OpenFlow bindings

● P4 to eBPF compiler refinement (needs optimizer; use LLVM?)
● Lots of code to crank out.

Questions?

Source code:
https://github.com/blp/ovs-reviews/releases/tag/p4-workshop

P4-to-eBPF Example
BPF

set_metadata(flow.dl_dst)

r5 = l2_eth.eth_dst

 1: ld #0, r5

 3: ldd [r5], r5

 4: rshd #0x10, r5

 5: lshd #0x10, r5

 6: ld #0x10068, r6

 8: ldd [r6], r7

 9: ld #0xffff, r8

 11: andd r7, r8

 12: ord r5, r7

 13: std r7, [r6]

...

r5 = current(0,16)

 27: ld #0, r5

 29: ldh 0xc[r5], r5

 30: if (r5 != #0x8100) jmp 32

 31: jmp 33

 32: jmp 744

P4

header_type l2_eth_t {

 fields {

 eth_dst : 48;

 eth_src : 48;

 }

}

header l2_eth_t l2_eth;

parser l2_eth {

 extract(l2_eth);

 set_metadata(flow.dl_dst, latest.eth_dst);

 set_metadata(flow.dl_src, latest.eth_src);

 return select(current(0, 16)) {

 0x8100: l2_vlan;

 default: l2_ethertype;

 }

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

