
The ACM Student Magazine

Obfuscation of The Standard XOR Encryption
Algorithm

by Zachary A. Kissel

Introduction

XOR Encryption is a popular encryption algorithm that is used in many browsers and
it is blatantly simpleand fairly secure. The XOR Encryption algorithm is an example of a
Symmetric Encryption algorithm. This means that the same key is used for both
encryption and decryption [7]. In the case of XOR Encryption, this is true because XOR

is a two-way function which means that the function can easily be undone [6]. In

the following paper the standard XOR Encryption algorithm will be introduced along
with a modification. The modification comes in the form of creating random
permutations of the key.

XOR Encryption

The classical XOR encryption algorithm is derived from Boolean Algebra. The XOR
function, here on expressed as XOR(a,b) where a and b are binary valued variables, is

defined by the followingtruth table (Table 1):

a b XOR(a,b)

0 0 0

0 1 1

1 0 1

1 1 0

Table 1: The truth table for the XOR function.

Another way to state the XOR function is to say that the function returns true when the

values of the two arguments are different. How does one apply this function to the art
of encryption? In the most basic sense one must generate a key. A key is a password
of sorts that the algorithm hinges on. For our purposes let k be some key value
represented in binary, for now let usjust use a byte (eight bits). Let m be a binary
representation of the message one byte in length. To obtain the cipher text ,which is
also known as the encrypted text, one simply applies the XOR function to generate the

cipher text c(c = XOR(m,k)) [3].

We know that not every message which we wish to encrypt is one byte long. In fact,
very rarely do we talk of bytes when we speak of encryption, more oftenwe speak of
bits. The above instance of the XOR algorithm is known as the 8-bit XOR Encryption
algorithm. We can generalize the algorithm to be of then-bit form by creating an n-bit
key.

In practice the message m may be broken into chunks of the same length, in bits, as
the key. For our purposes this is sensible considering the definition of the XOR function.

The cipher text is then generated in a similar way (c = XOR(p,k), p is a chunk of the

message with the same length in bits as k).In general, the algorithm is as follows:

while not end_of_message p = get_chunk(m) c = c + XOR(p,k) // where + is

the concatenation operator.end while

In the event that the message length, in bits, is not divisible by n, padding is added to
the message. This algorithm is good, but how does one get the key between peers in a
peer-to-peer communication model?

XOR Encryption and Peer-to-Peer Communication

XOR Encryption does not do much good if you cannot use it to communicate between
peers in real time. One common way in which peer-to-peer communication is
established is through the use of a Key Distribution Center (KDC). A Key Distribution
Center is responsible for creating keys in peer-to-peer communication. The keys which
a KDC provides are known as session keys. A session key is a key that is only valid
for the duration of the communication [7].

The use of a KDC works as follows: consider peer-A and peer-B who wish to
communicate using encrypted data. Peer-A starts by sending a request to connect to
peer-B. The request is buffered and the KDC generates a session key. The KDC then
sends the session key to both peer-A and peer-B, the request is then sent. Now both
peer-A and peer-B can communicate using encrypted messages [7] (Figure 1).

Figure 1: The key generation process: (1) Request key from KDC. (2) KDC distributes

key to peers. (3) Peers communicate.

The use of a KDC is the most secure method of key generation and distribution,
because the key is generated from a third party location. This fact makes the
communication resistant to cracking. However, because of the nature of XOR
Encryption, an attack on the KDC would destroy the integrity of the cipher.

Modification to the XOR Encryption Algorithm

In order to strengthen the XOR Encryption algorithm, principles from the Data
Encryption Standard (DES) are borrowed. The Data Encryption Standard isa
symmetric cipher considered to be a strong cipher not easily broken. Like most ciphers
DES has been broken; yet, is still consideredsecure enough for most applications [4].

The concept that is being borrowed from DES is the use of rotating bits in the key, also
known as a cyclic shift. Cyclic shifts introduce transposition--the replacing of one
character in a message for another. To further elaborate, bit rotation has two forms:
right bit rotations and left bit rotations. A single bit rotation can be performed simply.
For the right bit rotations, take the rightmost bit and put it in front of the leftmost bit.
For left bit rotations, take the leftmost bit and put it in front of the rightmost bit
(Figure 2). It should be noted that in order to rotate more than one bit the process

described above is applied the number of times that one wishes to rotate the string of
n bits.

Figure 2: Left (A) and right (B) bit rotations, the place the bit indicated

by the tail of the arrow in front of the bit pointed to by the arrow.

For our purposes let the rotate function be defined as rot(v,d,b) where v is the

binary variable, d is the direction of the shift, and b is the number bits to shift such
that 0 < b < n. The modified algorithm can now be fully described. Let the length of
the key, k, in bits be 128; this implies, for our simplified purposes, that the message
chunks will also be 128 bits in length. Assuming we have a valid session key from the
KDC, the algorithm proceeds as follows:

1. Generate the rotation direction d.
2. Generate, from random, the number of bits to rotate, b, such that 0 < b < n.
3. Rotate the key b times in the direction of d (rot(k,d,b)).

4. Preform the encryption (c = XOR(k,m)), where m is a 128-bit chunk of the

message.

5. Send the encrypted message c to the peer. Also, in the packet send the rotation
direction and number of bits to rotate.

6. Repeat steps 2-5 for every 128-bit chunk of the message.

In the event that the message is not divisible by 128, padding is added to the end of
the message. The padding character should be something that is not used often in the
data of the packet and must be agreed upon by both the sender and receiver. A good
choice for a padding character would be the null zero. The given improvements to the
standard XOR Encryption algorithm should complicate things if an attacker were able to
intercept the key from the KDC. Probabilistically, the key will never be the same for at
least two contiguous packets without deciphering each packet by hand, recalculating
the new key each time the attacker would not be able to penetrate the cipher. The
algorithm as presented is akin to Shannon's one time pad algorithm except Shannon's
one time pad only uses a key only once [1].In the described algorithm a key is

probabistically never used twice consecutively, but a keywill be used again eventually.
Executing this kind of process offers a level of obfuscation.

How would one create the packet for the new, Random Rotating XOR (RRX),
encryption algorithm? The data segment of the packet should be 136-bits in length.
The first bit will specify the rotation direction (0 = Left, 1 = Right), d. The next 7 bits,
which in implementation should be longer, will be representative of the number of bits
to rotate, b. The final 128 bits will hold the encrypted message (Figure 3).

Figure 3: A sample RRX packet structure.

How Good is RRX?

The strength of any encryption algorithm cannot always be accurately analyzed in the
laboratory. That being said there are two obvious flaws with the RRX algorithm. The
first major flaw is if the key were intercepted from the KDC by an attacker. The
attacker could then decrypt the messages for the rest of that session. This, however, is
complicated by the fact that the key is constantly being operated upon and therefore
dynamic. The fact that the key is dynamic does not add to the strength of the cipher in
a natural way, because it does not change the entropy. The cipher does, however,
offer a layer of obfuscation which presents a hurdle for an attacker. Entropy is defined
as a measure of randomness in the cipher. In order for an attacker to decrypt a
communication, the attacker needs to intercept all of the messages between the peers
and decrypt each packet so that the key is not operated on wrong. The second obvious
flaw is in the fact that RRX is a symmetric cipher. This means that the cipher hinges
mainly on the protection of the key. In the case of RRX this is slightly relaxed, but still
necessary.

Placing the weaknesses aside, RRX does offer some protection that is not available in
most XOR based encryption methods. RRX offers the protection of a dynamic key; this
dynamic key aides in preventing an attacker, who cannot intercept messages from a
well protected KDC, from applying frequency analysis as easily, across the collected
sub-messages. Frequency Analysis is the process of determining the percentage of the
occurrence of a certain pattern in a message. These percentages, or frequencies, are
then compared against a known list of frequencies and the attacker can guess at what
the message says without knowing the key [2]. Since, a packet of data is so small,

there does not exist a sufficient sample size to accurately use frequency analysis.
However, the algorithm can be cracked if every packet was saved and a user was able
to XOR appropriate packets together to obtain the proper key for a given pair of
packets. A rectification to this problem would be to request a new key for the session
from the KDC after a given amount of time or a statistical event becomes highly likely.

Knowing the algorithm for RRX does not allow an attacker to easily decipher the
communications because of the random nature of the key operations. If the results of
the key operations were predictable the attacker would only need to know the given
datum's placement in the sequence, provided the key had also been intercepted

A final strength that RRX has, as much as the other XOR based encryption ciphers, is
that RRX can be implemented in both hardware and software effectively. This allows
the actual hardware that supports RRX to be implemented directly on the Network

Interface Card (NIC). As far as RRX implemented as a software solution, the program
could be easily written as a tiny segment of well tuned assembly code (to improve
performance).

Conclusion

RRX is a viable solution to encryption on small LANs, such as a college or small
university campuses. An alternative XOR based encryption algorithm, viable for large
networks, is Blowfish [5]. Blowfish is one of the better known XOR based encryption

standards that are commonly investigated. A particularly interesting avenue would beto
compare the effectiveness of Blowfish with that of RRX on a small to medium sized
LAN.

The algorithm presented in this paper is a small, tidy, and quick algorithm that I
believe will keep a small to mid sized LAN secure for a long time. Above that, it is
based on the beauty and flaws of a symmetric encryption algorithm--so, pains must be
taken to ensure secure implementation.

References

1
Collins, G. P. (2002). Claude E. Shannon: Founder of Information Theory.
Scientific American.
<http://cispom.boisestate.edu/murli/links/ShannonSciAm.htm>.

2
Gaines, H. F. (1956). Cryptanalysis: A Study of Ciphers and Their Solution.
Dover Publications, New York, NY, pp. 74-75.

3
Irvine, K. R. (2003). Assembly Language for Intel-Based Computers. Prentice
Hall,Upper Saddle River, NJ, pp. 195-198.

4
Loudon, K. (1999). Mastering Algorithms with C. O'Reilly Press, Sebastopol, CA,
pp. 425-432.

5
Schneier B. (1994). Description of a New Variable-Length Key, 64-Bit Block
Cipher (Blowfish).Springer-Verlag, UK, pp. 191-204.
<http://www.schneier.com/paper-blowfish-fse.html>.

6
Singh, S. (2000). The Code Book: The Science of Secrecy from Ancient Egypt to

Quantum Cryptography. Anchor Books, NY, pp. 260-261
7

Stallings, W. (2004). Data and Computer Communications. Pearson Prentice Hall,
Upper Saddle River, NJ, pp. 706-740.

Biography

Zach Kissel (kisselz@merrimack.edu) is a Computer Science and Mathematics major

at Merrimack College. His main Computer Science interests include artificial intelligence
(specifically in the field of Bio-Computation), large scale computing, and data
communications. In his spare time he enjoys mountain biking and running.

