
Converging Approaches in Software Switches

Ben Pfaff
VMware

2

The Point

There are two main ways to build software switch pipelines:

“code-driven”

and

“data-driven”

Usually, these are considered to be alternatives.

They can actually be complementary.

3

Irrelevancies

The distinction I am making is not about packet I/O methods like:
● Custom kernel module
● AF_PACKET sockets
● DPDK
● Netmap

Packet I/O is key to performance but not to switch pipelines.

4

Code-Driven Switch Pipeline

code code

code

code

code
ingress egress

Executes series of code fragments (“stages”) per packet.

● Obvious.
● Loose coupling.

5

Code-Driven Pipeline Stages

code

● Can do anything or nothing.
● Each stage increases per-packet latency.
● Near-zero fixed overhead.
● Therefore: null pipeline is very fast.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

Packet Forwarding Latency versus Number of Stages

Code-Driven

Number of Stages

F
o

rw
a

rd
in

g
 L

a
te

n
cy

6

DPDK and Netmap Are Not Software Switches

DPDK and Netmap are packet I/O methods.

Early publications compared them against software switches.

This is unfair: compare them against other packet I/O methods
instead.

7

Some Code-Driven Switches
in chronological order

1) Linux bridge + iptables + ebtables + …

2) Click

3) VMware VDS

4) VMware NSX Edge

5) VPP

6) BESS

8

Data-Driven Switch Pipeline

data data

data

data

data
ingress egress

A single engine drives each packet through all the stages,
each of which is a data table.

parser

- Unnatural for programmers
- Limited by engine's capabilities
- Parsing is expensive
+Parsing happens only once per pipeline

9

Data-Driven Pipeline Stages

data data data data× ×× ∙∙∙ × = data

N stages

N stages can be cross-producted into 1 stage (see NSDI 2015 paper):

0 1 2 3 4 5 6 7
0

2

4

6

8

10

Packet Forwarding Latency vs. Number of Stages

Code-Driven

Data-Driven

Number of Stages

F
o

rw
a

rd
in

g
 L

a
te

n
cy

● High fixed cost.
● Adding stages adds little per-packet latency.
● Therefore: null pipeline is slow, complex

pipeline is fast.
● Hardware classification offload is possible.

10

Some Data-Driven Switches

● Open vSwitch
● MidoNet

11

Crossover

Can we combine strengths of both approaches?

Code-driven:

 + Low fixed overhead.

 + Flexibility.

Data-driven:

 + Low per-stage overhead.

 + Common parser.

I don't have a complete answer but I have some thoughts.

12

Code-Driven Moving Toward Data-Driven

Are you skeptical?

“If a data-driven pipeline is faster than a code-driven one, for some
application, then the code-driven pipeline code is badly written.”

But I have two data points:

1. VMware VDS

2. VMware NSX Edge

13

Data-Driven Moving Toward Code-Driven

Attack sources of fixed overhead:
● Cost of parsing, by parsing less.
● Cost of classification, by hardware offload (which is not just for high-

priced specialized hardware).

Increase flexibility:
● Integrate arbitrary code, via eBPF/P4.
● Integrate external code, e.g. kernel conntrack, NAT.
● Integrate into pipelines of middleboxes: SoftFlow.

14

Conclusion

Two seemingly different software switch pipelines,
“code-driven” and “data-driven,” may ultimately move

closer to one another than they started out.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

