The following continuous distributions are available:
Beta distribution with shape parameters a and b. The noncentral distribution takes an additional parameter lambda. Constraints: a > 0, b > 0, lambda >= 0, 0 <= x <= 1, 0 <= p <= 1.
Bivariate normal distribution of two standard normal variables with correlation coefficient rho. Two variates x0 and x1 must be provided. Constraints: 0 <= rho <= 1, 0 <= p <= 1.
Cauchy distribution with location parameter a and scale parameter b. Constraints: b > 0, 0 < p < 1.
Chi-squared distribution with df degrees of freedom. The noncentral distribution takes an additional parameter lambda. Constraints: df > 0, lambda > 0, x >= 0, 0 <= p < 1.
Exponential distribution with scale parameter a. The inverse of a represents the rate of decay. Constraints: a > 0, x >= 0, 0 <= p < 1.
Exponential power distribution with positive scale parameter a and nonnegative power parameter b. Constraints: a > 0, b >= 0, x >= 0, 0 <= p <= 1. This distribution is a PSPP extension.
F-distribution of two chi-squared deviates with df1 and df2 degrees of freedom. The noncentral distribution takes an additional parameter lambda. Constraints: df1 > 0, df2 > 0, lambda >= 0, x >= 0, 0 <= p < 1.
Gamma distribution with shape parameter a and scale parameter b. Constraints: a > 0, b > 0, x >= 0, 0 <= p < 1.
Laplace distribution with location parameter a and scale parameter b. Constraints: b > 0, 0 < p < 1.
Levy symmetric alpha-stable distribution with scale c and exponent alpha. Constraints: 0 < alpha <= 2.
Levy skew alpha-stable distribution with scale c, exponent alpha, and skewness parameter beta. Constraints: 0 < alpha <= 2, -1 <= beta <= 1.
Logistic distribution with location parameter a and scale parameter b. Constraints: b > 0, 0 < p < 1.
Lognormal distribution with parameters a and b. Constraints: a > 0, b > 0, x >= 0, 0 <= p < 1.
Normal distribution with mean mu and standard deviation sigma. Constraints: b > 0, 0 < p < 1. Three additional functions are available as shorthand:
Equivalent to CDF.NORMAL(x, 0, 1).
Equivalent to IDF.NORMAL(p, 0, 1).
Equivalent to RV.NORMAL(0, sigma).
Normal tail distribution with lower limit a and standard deviation sigma. This distribution is a PSPP extension. Constraints: a > 0, x > a, 0 < p < 1.
Pareto distribution with threshold parameter a and shape parameter b. Constraints: a > 0, b > 0, x >= a, 0 <= p < 1.
Rayleigh distribution with scale parameter sigma. This distribution is a PSPP extension. Constraints: sigma > 0, x > 0.
Rayleigh tail distribution with lower limit a and scale parameter sigma. This distribution is a PSPP extension. Constraints: a > 0, sigma > 0, x > a.
T-distribution with df degrees of freedom. The noncentral distribution takes an additional parameter lambda. Constraints: df > 0, 0 < p < 1.
Type-1 Gumbel distribution with parameters a and b. This distribution is a PSPP extension. Constraints: 0 < p < 1.
Type-2 Gumbel distribution with parameters a and b. This distribution is a PSPP extension. Constraints: x > 0, 0 < p < 1.
Uniform distribution with parameters a and b. Constraints: a <= x <= b, 0 <= p <= 1. An additional function is available as shorthand:
Equivalent to RV.UNIFORM(0, b).