PSPP Users’ Guide

GNU PSPP Statistical Analysis Software
Release 1.6.2-g069¢b6

This manual is for GNU PSPP version 1.6.2-g069ch6, software for statistical analysis.

Copyright (© 1997, 1998, 2004, 2005, 2009, 2012, 2013, 2014, 2016, 2019, 2020 Free Software
Foundation, Inc.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation License".

Table of Contents

1 Introduction.................... 1
2 Your rights and obligations..................... 2
3 Invoking pspp......ccooriiiiii 3
3.1 Main Options.ttt 3
3.2 PDF, PostScript, SVG, and PNG Output Options 6
3.3 Plain Text Output Optionscoiiiiiiiiiiiiein.n. 7
3.4 SPV Output Optionsoouiiiii e 8
3.5 TeX Output Optionsoviiiii e 9
3.6 HTML Output Options.ccuiiuiiiiiiiiiiiiiiean 9
3.7 OpenDocument Output Options................coviiiiiiian. 9
3.8 Comma-Separated Value Output Options 9

4 Invoking psppire ... 11
4.1 The graphic user interface i, 11

5 Using PSPP....... ..t 12
5.1 Preparation of Data Files............ L. 12
5.1.1 Defining Variables i i 13

5.1.2 Listing thedatao i i 13

5.1.3 Reading data from a text file 14

5.1.4 Reading data from a pre-prepared Pspp file 14

5.1.5 Saving datatoa PSPPfile................coiiiiiiiiiat, 15

5.1.6 Reading data from other sources.......................... 15

5.1.7 Exiting PSPP ... 15

5.2 Data Screening and Transformation............................ 15
5.2.1 Identifying incorrect data............ ..., 15

5.2.2 Dealing with suspicious data..............., 16

5.2.3 Inverting negatively coded variables....................... 17

5.2.4 Testing data consistency 18

5.2.5 Testing for normality oo i, 19

5.3 Hypothesis Testing ... 21
5.3.1 Testing for differences of means........................... 21

5.3.2 Linear Regression..........cooiiiiiiiiiiiiiiiiiiinann.. 23

6 The pPSspPP language 25
6.1 TOKENS . . oottt 25
6.2 Forming commands of tokens.............. L 26
6.3 Syntax Variantsciiiiiiiiiii i 27

6.4 Types of Commands..........ccoouiiiiiiiiiiiiiiiannn.. 27

6.5 Order of Commands..........ooiiiiiiiiiii i, 28
6.6 Handling missing observations it 29
6.7 Datasets ..o 29
6.7.1 Attributes of Variables.............. 29
6.7.2 Variables Automatically Defined by PSPP 31
6.7.3 Lists of variable names............... 32
6.7.4 Input and Output Formats................................ 32
6.7.4.1 Basic Numeric Formats.............................. 33
6.7.4.2 Custom Currency Formats........................... 35
6.7.4.3 Legacy Numeric Formats.................. 36
6.7.4.4 Binary and Hexadecimal Numeric Formats........... 37
6.7.4.5 Time and Date Formats.............................. 38
6.7.4.6 Date Component Formats............................ 41
6.7.4.7 String Formats i 41

6.7.5 Scratch Variables........... 41
6.8 Files Used by PSPP ..ottt 42
6.9 File Handles. ... 42
6.10 Backus-Naur Form 43
Mathematical Expressions..................... 44
7.1 Boolean Values......... ..o 44
7.2 Missing Values in Expressions ... 44
7.3 Grouping Operatorsoouieeiiiie i, 44
7.4 Arithmetic Operators.ot 44
7.5 Logical Operatorsuoiiiiiiiii e 45
7.6 Relational Operatorsc.ooiiiiiiiiiiiiiiiiiean 45
T.7 Functionsiii 46
7.7.1 Mathematical Functions 46
7.7.2 Miscellaneous Mathematical Functions.................... 46
7.7.3 Trigonometric Functions.............. ..., 47
7.7.4 Missing-Value Functionsl 47
7.7.5 Set-Membership Functions................................ 48
7.7.6 Statistical Functions.......... 48
7.7.7 String Functions........ ... i 49
7.7.8 Time & Date Functions..............coiiiiiiiiiinnno. .. 51
7.7.8.1 How times & dates are defined and represented....... 51
7.7.8.2 Functions that Produce Times 51
7.7.8.3 Functions that Examine Times....................... 51
7.7.8.4 Functions that Produce Dates........................ 52
7.7.8.5 Functions that Examine Dates....................... 53
7.7.8.6 Time and Date Arithmetic........................... 54

7.7.9 Miscellaneous Functions 55
7.7.10 Statistical Distribution Functions 55
7.7.10.1 Continuous Distributions 56
7.7.10.2 Discrete Distributions............... 60

7.8 Operator Precedencet 61

ii

8 Data Input and Output........................ 62

8.1 BEGIN DAT A . ..o 62
8.2 CLOSE FILE HANDLE e 62
8.3 DATAFILE ATTRIBUTEo 62
8.4 DATASET commandsoouuiiiiiiteiiieeiieeann.. 63
8.5 DATA LIST .. 64
8.5.1 DATA LISTFIXEDot 64
Exampleso 66

852 DATALISTFREEo 67
8.5.3 DATA LIST LIST 68
8.6 END CASE ... 68
8.7 END FILE ... o e 68
8.8 FILE HANDLE e 68
8.9 INPUT PROGRAM. e 71
810 LIS ... 74
811 NEW FILEo e e 74
8.12 PRINT ... 74
8.13 PRINT EJECT ... e 75
8.14 PRINT SPACE e 76
8.15 REREAD 76
8.16 REPEATING DATA e 7
817 WRITE .. 78
9 System and Portable File I/O................. 79
9.1 APPLY DICTIONARY ...t 79
9.2 EXPORT ... 80
0.3 GET ... 80
9.4 GET DAT A .. 81
9.4.1 Spreadsheet Files...... ..o 82
9.4.2 Postgres Database Queries............ ... o ool 82
9.4.3 Textual Data Files.............o i 83
9.4.3.1 Reading Delimited Data 84
9.4.3.2 Reading Fixed Columnar Data....................... 86

0.5 IMPORT ... 87
0.6 SAVE ..o 87
9.7 SAVE DATA COLLECTIONot 89
9.8 SAVE TRANSLATE e 89
9.8.1 Writing Comma- and Tab-Separated Data Files........... 90
9.9 SYSFILE INFO ... e 91
9.10 XEXPORT ... 92
9.11 XSAVE .. 92
10 Combining Data Files........................ 93
10.1 Common SYNEAK ..o .vv vttt 93
10.2 ADD FILES ... e 95
10.3 MATCH FILESo e 96

10.4 UPDATE ... 97

11 Manipulating Variables....................... 98

111 DISPLAY . 98
11.2 NUMERIC . ..o e 99
11.3 STRING . ..o e 99
11.4 RENAME VARIABLES ... 99
11.5 SORT VARIABLESo 100
11.6 DELETE VARIABLES.o 101
11.7 VARIABLE LABELS 101
11.8 PRINT FORMATS ... 101
11.9 WRITE FORMATSo 102
11.10 FORMATS ... e 102
11.11 VALUE LABELS ... e 102
11.12 ADD VALUE LABELS 102
11.13 MISSING VALUES ... 103
11.14 VARIABLE ATTRIBUTEco i 103
11.15 VARIABLE ALIGNMENT 104
11.16 VARIABLE WIDTH....... ... 104
11.17 VARIABLE LEVEL o 105
11.18 VARIABLE ROLE. i 105
11.19 VECTOR e 105
11.20 MRSE TS .. 106
11.21 LEAVE .. 107
12 Data transformations........................ 108
12.1 AGGREGATE ... 108
12.1.1 Aggregate Example............coiiiiiiiiii i 111
12.2 AUTORECODE 111
12.2.1 Autorecode Example i 112
12.3 COMPUTE o e 114
12.3.1 Compute Examples. ... 115
12,4 COUNT L e 116
12.4.1 Count Examples. ... 117
125 FLIP .o 119
12.5.1 Flip Examples.o 120
12.6 TF oo 121
12.7 RECODE e 122
12.8 SORT CASES. .. e 124
12.8.1 Sorting Example i 125
13 Selecting data for analysis.................. 129
13.1 FILTER ... e 129
13.2 N OF CASES ..o 129
13.3 SAMPLE . ..o 130
134 SELECT IF 130
13.4.1 Example Select-If. 130
13.5 SPLIT FILEo e 131

13.5.1 Example Split..... ..o 132

13.6 TEMPORARYo 134

13.6.1 Example Temporary......... oo, 134
13.7 WEIGHT ... e 135
13.7.1 Example Weights. ... 135
14 Conditional and Looping Constructs....... 137
14.1 BREAK ... 137
14.2 DEFINE ... 137
14.2. 1 OVEIVIEW . o oottt e e e e 137
14.2.2 Introduction........... ..., 138
14.2.3 Macro Bodies ... 139
14.2.4 Macro Argumentsootiiiiii e 139
14.2.5 Controlling Macro Expansion....................ov.... 142
14.2.6 Macro Functions ..., 142
14.2.7 Macro EXpressionscccooiiiiiiiiiiiiiiiii.., 145
14.2.8 Macro Conditional Expansion 146
14.2.9 Macro Loops 146
14.2.10 Macro Variable Assignment...................coev.... 147
14.2.11 Macro Settingsovveriint i 147
14.2.12 Additional Notes. ... 147
14.2.12.1 Calling Macros from Macros...................... 147
14.2.12.2 Command Terminators........................... 148
14.2.12.3 Expansion Contextsc.oovuveiiiienennn... 148
14.2.12.4 PRESERVE and RESTORE...................... 148

14.3 DO IF o 148
144 DO REPEATo 149
14.5 LOOP ..o 150
15 Statistics..........l 151
15.1 DESCRIPTIVES. ... e 151
15.1.1 Descriptives Example.......... ... i i i 152
15.2 FREQUENCIES e 154
15.2.1 Frequencies Example o it 156
15.3 EXAMINE. ..o 157
15.4 GRAPH ... 160
15.4.1 Scatterplot . ..o 160
15.4.2 Histogramcooiiiiiiiii it 160
15.4.3 Bar Chart........ooiiiii 160
15.5 CORRELATIONS e 161
15.6 CROSSTABS ... e 162
15.6.1 Crosstabs Example............co i 165
15.7 CTABLES ... o 168
15,71 BasSiCS. o 169
15.7.1.1 Categorical Variables................... 169
15.7.1.2 Scalar Variables, 171
15.7.1.3 Overriding Measurement Level 172

15.7.2 Data Summarizationcoouiininiinnnn.. 174

15.7.2.1 Summary Functions for Individual Cells............ 176

15.7.2.2 Summary Functions for Groups of Cells............ 177
15.7.2.3 Summary Functions for Adjusted Weights.......... 178
15.7.2.4 Unweighted Summary Functions................... 179
15.7.3 Statistics Positions and Labels.................. 179
15.7.4 Category Label Positions...................., 180
15.7.5 Per-Variable Category Options 184
15.7.5.1 Explicit Categories ..., 184
15.7.5.2 Implicit Categories ..., 185
15.7.5.3 Totals and Subtotals............. 186
15.7.5.4 Categories Without Values......................... 188
15.7.6 Titles ..o 188
15.7.7 Table Formatting.............. i, 189
15.7.8 Display of Variable Labels.............. 189
15.7.9 Missing Value Treatment, 190
15.7.9.1 Missing Values for Cell-Defining Variables.......... 190
15.7.9.2 Missing Values for Summary Variables............. 191
15.7.9.3 Scale Missing Values.............. ..o, 192
15.7.10 Computed Categoriescoviiiiiiiiiiieana.. 193
15.7.10.1 PCOMPUTE. 193
15.7.10.2 PPROPERTIES..... ... 195
15.7.11 Effective Weight........ ... i 196
15.7.12 Hiding Small Counts, 196
15.8 FACTOR ... e 196
15.9 GLM .. 199
15.10 LOGISTIC REGRESSIONo 199
15.11 MEANS « 201
15.11.1 Example Means...........cooiiiiiiiiiiiiiiiiii .. 202
1512 NPAR TESTS ..o e 203
15.12.1 Binomial test....... ... o i 204
15.12.2 Chi-square Testot 205
15.12.2.1 Chi-square Example........... 205
15.12.3 Cochran Q Test ... 206
15.12.4 Friedman Test......... .o 207
15.12.5 Kendall’s W Test. ... 207
15.12.6 Kolmogorov-Smirnov Test 207
15.12.7 Kruskal-Wallis Testo i, 208
15.12.8 Mann-Whitney U Test ..., 208
15.12.9 MecNemar Test ... 208
15.12.10 Median Test ... 208
15,1211 Runs Test. .. 209
15.12.12 Sign Test .o .vvei i 209
15.12.13 Wilcoxon Matched Pairs Signed Ranks Test 209
15.13 T-TEST L 209
15.13.1 One Sample Mode. 210
15.13.1.1 Example - One Sample T-test 210
15.13.2 Independent Samples Mode................... 212

15.13.2.1 Example - Independent Samples T-test 212

vii

15.13.3 Paired Samples Mode, 216
15.14 ONEWAY ... e 216
15.15 QUICK CLUSTERo 217
15,16 RANK ... 218
15.17 REGRESSION e 219
15171 SyMbaX ..ttt e e 219
15.17.2 Examplesoooiiiii 220
15.18 RELIABILITY ... e 221
15.18.1 Example - Reliability............... ..ol 221
15.19 ROC. .. 223
16 Matrices......... ... 225
16.1 Matrix Files. ... 225
16.2 MATRIX DATA ... 226
16.2.1 With ROWTYPE ...t e i 227
16.2.2 Without ROWTYPE _ot 230
16.2.2.1 Factor variables without ROWIYPE_................. 232
16.3 MCONVERT 233
16.4 MATRIX ..o 234
16.4.1 Matrix EXpressions..........o.coeeiiiiiiiiiiiiiiiii... 236
16.4.1.1 Matrix Construction Operator {}.................. 236
16.4.1.2 Integer Sequence Operator “:’...................... 237
16.4.1.3 Index Operator ()ooeiiiiiiieeiiinannn.. 237
16.4.1.4 Unary Operatorsc...ooviiiiiiniinnnenn.. 238
16.4.1.5 Elementwise Binary Operators..................... 238
16.4.1.6 Matrix Multiplication Operator ‘*’................. 239
16.4.1.7 Matrix Exponentiation Operator **................ 239
16.4.2 Matrix Functions........ 240
16.4.2.1 Elementwise Functions............................. 240
16.4.2.2 Logical Functions.................o .. 241
16.4.2.3 Matrix Construction Functions 242
16.4.2.4 Minimum, Maximum, and Sum Functions.......... 244
16.4.2.5 Matrix Property Functions......................... 245
16.4.2.6 Matrix Rank Ordering Functions................... 245
16.4.2.7 Matrix Algebra Functions.......................... 245
16.4.2.8 Matrix Statistical Distribution Functions........... 248
16.4.2.9 EOF Function.............coiiiiiiiiiiiii ... 248
16.4.3 The COMPUTE Commandcoviiiieeeeenaannn. 249
16.4.4 The CALL Command.............cooiiiiieereeeennnnnnnn. 249
16.4.5 The PRINT Commandcoviiiiirirennennnnn.. 250
16.4.6 The DO IF Command..........ccovveiiiiiiiiiinnnnnn... 252
16.4.7 The LOOP and BREAK Commands.....................n.. 252
16.4.7.1 The BREAK Command..................coiiiinnin. 253
16.4.8 The READ and WRITE Commands........................ 254
16.4.8.1 The READ Command...............coviiiiieennn... 255
16.4.8.2 The WRITE Command.............covvveeeniiinnnn. 256

16.4.9 The GET Commandouieiiirineniinennnnn... 257

16.4.10 The SAVE Command.cuuuuiinninmianan.. 258

viii

16.4.11 The MGET Command.............ciiiiiieneeei. 259
16.4.12 The MSAVE Commandoouriiiiiniinnnn. 260
16.4.13 The DISPLAY Commandcoviiiiieiinnn... 260
16.4.14 The RELEASE Commandcoviiiiniinnn... 261

17 Utilities.......... 262
17.1 ADD DOCUMENT e 262
17.2 CACHE. ... 262
17.3 O 262
174 COMMENT ... 262
17.5 DOCUMENT e 263
17.6 DISPLAY DOCUMENTS ...\ 263
17.7 DISPLAY FILE LABEL 263
17.8 DROP DOCUMENTS ... 263
179 ECHO ..o 263
1710 ERASE ..o 263
17.11 EXECUTE ... 264
1712 FILE LABEL 264
1713 FINISH. ... o 264
1714 HOST .. o 264
17.15 INCLUDE ... 265
17.16 INSERT ... 265
1717 OUTPU T . . 266
17.18 PERMISSIONS .. o e 267
17.19 PRESERVE and RESTORE 267
17.20 SET .o 267
17.21 SHOW .o 275
1722 SUBTITLE 276
17.23 TITLE. ... e 276
18 Invoking pspp-convert....................... 277
19 Invoking pspp-outputcoia... 280
19.1 Thedetect Command, 280
19.2 Thedir Command. ...ttt 280
19.3 The convert Commandot iiiieeinnn... 280
19.4 The get-table-look Command............................. 281
19.5 The convert-table-look Command........................ 281
19.6 Input Selection Options 281
20 Invoking pspp-dump-sav...................... 284
21 Not Implemented............................ 285
22 BUES ... 289

X

23 Function Index.......... 292
24 Command Index........... 295
25 Concept Index............................... 297

Appendix A GNU Free Documentation License .. 303

1 Introduction

PSPP is a tool for statistical analysis of sampled data. It reads the data, analyzes the data
according to commands provided, and writes the results to a listing file, to the standard
output or to a window of the graphical display.

The language accepted by PSPP is similar to those accepted by SPSS statistical products.
The details of PsSPP’s language are given later in this manual.

PSPP produces tables and charts as output, which it can produce in several formats;
currently, ASCII, PostScript, PDF, HTML, DocBook and TEX are supported.

The current version of PSPP, 1.6.2-g069cb6, is incomplete in terms of its statistical pro-
cedure support. PSPP is a work in progress. The authors hope to fully support all features
in the products that PSPP replaces, eventually. The authors welcome questions, comments,
donations, and code submissions. See Chapter 22 [Submitting Bug Reports|, page 289, for
instructions on contacting the authors.

2 Your rights and obligations

PSPP is not in the public domain. It is copyrighted and there are restrictions on its distri-
bution, but these restrictions are designed to permit everything that a good cooperating
citizen would want to do. What is not allowed is to try to prevent others from further
sharing any version of this program that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of PSPP,
that you receive source code or else can get it if you want it, that you can change these
programs or use pieces of them in new free programs, and that you know you can do these
things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else
of these rights. For example, if you distribute copies of PSPP, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the
source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for pspp. If these programs are modified by someone else and passed on, we
want their recipients to know that what they have is not what we distributed, so that any
problems introduced by others will not reflect on our reputation.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise conditions of the license for Pspp are found in the GNU General Public
License. You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301 USA. This manual specifically is covered by the GNU Free
Documentation License (see Appendix A [GNU Free Documentation License], page 303).

3 Invoking pspp

PSPP has two separate user interfaces. This chapter describes pspp, PSPP’s command-line
driven text-based user interface. The following chapter briefly describes PSPPIRE, the
graphical user interface to PSPP.

The sections below describe the pspp program’s command-line interface.

3.1 Main Options

Here is a summary of all the options, grouped by type, followed by explanations in the same
order.

In the table, arguments to long options also apply to any corresponding short options.

Non-option arguments
syntax-file

Output options
-0, —--output=output-file
-0 option=value
-0 format=format
-0 device={terminal|listing}

—-—no-output

--table-look=file

-e, ——error-file=error-file
Language options

-I, —--include=dir

-I-, —--no-include

-b, —--batch

-i, —-—-interactive

-r, --no-statrc

-a, --algorithm={compatible|enhanced}

-x, —--syntax={compatible|enhanced}

--syntax-encoding=encoding

Informational options

-h, --help

-V, —--version
Other options

-s, ——safer

--testing-mode

syntax-file Read and execute the named syntax file. If no syntax files are specified, PSPp
prompts for commands. If any syntax files are specified, PSPP by default exits
after it runs them, but you may make it prompt for commands by specifying
‘=" as an additional syntax file.

-0 output-file
Write output to output-file. PSPP has several different output drivers that
support output in various formats (use --help to list the available formats).

Chapter 3: Invoking pspp 4

Specify this option more than once to produce multiple output files, presumably
in different formats.

Use ‘=’ as output-file to write output to standard output.

If no -o option is used, then PSPP writes text and CSV output to standard
output and other kinds of output to whose name is based on the format, e.g.
pspp-pdf for PDF output.

-0 option=value
Sets an option for the output file configured by a preceding -o. Most options
are specific to particular output formats. A few options that apply generically
are listed below.

-0 format=format
PSPP uses the extension of the file name given on -o to select an output format.
Use this option to override this choice by specifying an alternate format, e.g.
-0 pspp.out -0 format=html to write HI'ML to a file named pspp.out. Use
—--help to list the available formats.

-0 device={terminal|listing}
Sets whether PSPP considers the output device configured by the preceding -o
to be a terminal or a listing device. This affects what output will be sent to
the device, as configured by the SET command’s output routing subcommands
(see Section 17.20 [SET], page 267). By default, output written to standard
output is considered a terminal device and other output is considered a listing
device.

--no-output
Disables output entirely, if neither —o nor -0 is also used. If one of those options
is used, ——no-output has no effect.

-—table-look=file
Reads a table style from file and applies it to all PSPP table output. The file
should be a TableLook .stt or .tlo file. PSPP searches for file in the current
directory, then in .pspp/looks in the user’s home directory, then in a looks
subdirectory inside PSPP’s data directory (usually /usr/local/share/pspp). If
PSPP cannot find file under the given name, it also tries adding a .stt extension.

When this option is not specified, PSPP looks for default.stt using the algo-
rithm above, and otherwise it falls back to a default built-in style.

Using SET TLOOK in PSPP syntax overrides the style set on the command line
(see Section 17.20 [SET], page 267).

-e error-file

-—error—-file=error-file
Configures a file to receive PSPP error, warning, and note messages in plain
text format. Use ‘=’ as error-file to write messages to standard output. The
default error file is standard output in the absence of these options, but this is
suppressed if an output device writes to standard output (or another terminal),
to avoid printing every message twice. Use ‘none’ as error-file to explicitly
suppress the default.

Chapter 3: Invoking pspp)

-Idir

--include=dir
Appends dir to the set of directories searched by the INCLUDE (see Section 17.15
[INCLUDE], page 265) and INSERT (see Section 17.16 [INSERT], page 265)
commands.

I

--no-include
Clears all directories from the include path, including directories inserted in
the include path by default. The default include path is . (the current direc-
tory), followed by .pspp in the user’s home directory, followed by PSPP’s system
configuration directory (usually /etc/pspp or /usr/local/etc/pspp).

-b

--batch

-i

-—interactive
These options forces syntax files to be interpreted in batch mode or interac-
tive mode, respectively, rather than the default “auto” mode. See Section 6.3
[Syntax Variants|, page 27, for a description of the differences.

-r

--no-statrc
By default, at startup PsSPP searches for a file named rc in the include path
(described above) and, if it finds one, runs the commands in it. This option
disables this behavior.

-a {enhanced|compatible}

—--algorithm={enhanced|compatible}
With enhanced, the default, PSPP uses the best implemented algorithms for
statistical procedures. With compatible, however, PsPP will in some cases
use inferior algorithms to produce the same results as the proprietary program
SPSS.

Some commands have subcommands that override this setting on a per com-
mand basis.

-x {enhanced|compatible}

--syntax={enhanced|compatible}
With enhanced, the default, PSPP accepts its own extensions beyond those
compatible with the proprietary program SPSS. With compatible, PSPP rejects
syntax that uses these extensions.

--syntax-encoding=encoding
Specifies encoding as the encoding for syntax files named on the command
line. The encoding also becomes the default encoding for other syntax files
read during the PSPP session by the INCLUDE and INSERT commands. See
Section 17.16 [INSERT], page 265, for the accepted forms of encoding.

--help Prints a message describing PSPP command-line syntax and the available device
formats, then exits.

Chapter 3: Invoking pspp 6

-V

--version
Prints a brief message listing PSPP’s version, warranties you don’t have, copying
conditions and copyright, and e-mail address for bug reports, then exits.

-s
--safer Disables certain unsafe operations. This includes the ERASE and HOST com-
mands, as well as use of pipes as input and output files.

--testing-mode
Invoke heuristics to assist with testing PSPP. For use by make check and similar
scripts.

3.2 PDF, PostScript, SVG, and PNG Output Options

To produce output in PDF, PostScript, SVG, or PNG format, specify -o file on the
pspPp command line, optionally followed by any of the options shown in the table below to
customize the output format.

PDF, PostScript, and SVG use real units: each dimension among the options listed
below may have a suffix ‘mm’ for millimeters, ‘in’ for inches, or ‘pt’ for points. Lacking a
suffix, numbers below 50 are assumed to be in inches and those above 50 are assumed to
be in millimeters.

PNG files are pixel-based, so dimensions in PNG output must ultimately be measured
in pixels. For output to these files, PSPP translates the specified dimensions to pixels at
72 pixels per inch. For PNG output only, fonts are by default rendered larger than this, at
96 pixels per inch.

An SVG or PNG file can only hold a single page. When PSPP outputs more than one
page to SVG or PNG, it creates multiple files. It outputs the second page to a file named
with a -2 suffix, the third with a -3 suffix, and so on.

-0 format={pdf |ps|svg|png}
Specify the output format. This is only necessary if the file name given on -o
does not end in .pdf, .ps, .svg, or .png.

-0 paper-size=paper-size
Paper size, as a name (e.g. a4, letter) or measurements (e.g. 210x297,
8.5x11in).

The default paper size is taken from the PAPERSIZE environment variable or the
file indicated by the PAPERCONF environment variable, if either variable is set.
If not, and your system supports the LC_PAPER locale category, then the default
paper size is taken from the locale. Otherwise, if /etc/papersize exists, the
default paper size is read from it. As a last resort, A4 paper is assumed.

-0 foreground-color=color
Sets color as the default color for lines and text. Use a CSS color format (e.g.
#rrggbb) or name (e.g. black) as color.

-0 orientation=orientation
Either portrait or landscape. Default: portrait.

Chapter 3: Invoking pspp 7

-0 left-margin=dimension

-0 right-margin=dimension

-0 top-margin=dimension

-0 bottom-margin=dimension
Sets the margins around the page. See below for the allowed forms of dimension.
Default: 0.5in.

-0 object-spacing=dimension
Sets the amount of vertical space between objects (such as headings or tables).

-0 prop-font=font-name
Sets the default font used for ordinary text. Most systems support CSS-like
font names such as “Sans Serif”, but a wide range of system-specific fonts are
likely to be supported as well.

Default: proportional font Sans Serif.

-0 font-size=font-size
Sets the size of the default fonts, in thousandths of a point. Default: 10000 (10
point).

-0 trim=true
This option makes PSPP trim empty space around each page of output, be-
fore adding the margins. This can make the output easier to include in other
documents.

-0 outline=boolean
For PDF output only, this option controls whether PSPP includes an outline
in the output file. PDF viewers usually display the outline as a side bar that
allows for easy navigation of the file. The default is true unless -0 trim=true
is also specified. (The Cairo graphics library that PSPP uses to produce PDF
output has a bug that can cause a crash when outlines and trimming are used
together.)

-0 font-resolution=dpi
Sets the resolution for font rendering, in dots per inch. For PDF, PostScript,
and SVG output, the default is 72 dpi, so that a 10-point font is rendered with
a height of 10 points. For PNG output, the default is 96 dpi, so that a 10-point
font is rendered with a height of 10/72 x 96 = 13.3 pixels. Use a larger dpi to
enlarge text output, or a smaller dpi to shrink it.

3.3 Plain Text Output Options

PSPP can produce plain text output, drawing boxes using ASCII or Unicode line drawing
characters. To produce plain text output, specify -o file on the PSPP command line,
optionally followed by options from the table below to customize the output format.

Plain text output is encoded in UTF-8.
-0 format=txt

Specify the output format. This is only necessary if the file name given on -o
does not end in .txt or .list.

Chapter 3: Invoking pspp 8

-0 charts={template.png|none}
Name for chart files included in output. The value should be a file name that
includes a single ‘#’ and ends in png. When a chart is output, the ‘#’ is replaced
by the chart number. The default is the file name specified on -o with the
extension stripped off and replaced by -#.png.

Specify none to disable chart output.

-0 foreground-color=color

-0 background-color=color
Sets color as the color to be used for the background or foreground to be used
for charts. Color should be given in the format #RRRRGGGGBBBB, where RRRR,
GGGG and BBBB are 4 character hexadecimal representations of the red,
green and blue components respectively. If charts are disabled, this option has
no effect.

-0 width=columns
Width of a page, in columns. If unspecified or given as auto, the default is
the width of the terminal, for interactive output, or the WIDTH setting (see
Section 17.20 [SET], page 267), for output to a file.

-0 box={asciilunicode}
Sets the characters used for lines in tables. If set to ascii, output uses use the
characters ‘=’, ‘|’, and ‘+’ for single-width lines and ‘=’ and ‘#’ for double-width
lines. If set to unicode then, output uses Unicode box drawing characters.
The default is unicode if the locale’s character encoding is "UTF-8" or ascii
otherwise.

-0 emphasis={none|bold|underline}
How to emphasize text. Bold and underline emphasis are achieved with over-
striking, which may not be supported by all the software to which you might
pass the output. Default: none.

3.4 SPV Output Options

SPSS 16 and later write . spv files to represent the contents of its output editor. To produce
output in .spv format, specify —o file on the PSPP command line, optionally followed by
any of the options shown in the table below to customize the output format.

-0 format=spv
Specify the output format. This is only necessary if the file name given on -o
does not end in .spv.

-0 paper-size=paper-size

-0 left-margin=dimension

-0 right-margin=dimension

-0 top—margin=dimension

-0 bottom—margin=dimension

-0 object-spacing=dimension
These have the same syntax and meaning as for PDF output. See Section 3.2
[PDF PostScript SVG and PNG Output Options|, page 6, for details.

Chapter 3: Invoking pspp 9

3.5 TeX Output Options

If you want to publish statistical results in professional or academic journals, you will
probably want to provide results in TEX format. To do this, specify -o file on the PSPP
command line where file is a file name ending in .tex, or you can specify -0 format=tex.

The resulting file can be directly processed using TEX or you can manually edit the file
to add commentary text. Alternatively, you can cut and paste desired sections to another

TEX file.

3.6 HTML Output Options

To produce output in HTML format, specify —o file on the PSPP command line, optionally
followed by any of the options shown in the table below to customize the output format.

-0 format=html
Specify the output format. This is only necessary if the file name given on -o
does not end in .html.

-0 charts={template.png|none}
Sets the name used for chart files. See Section 3.3 [Plain Text Output Options],
page 7, for details.

-0 borders=boolean
Decorate the tables with borders. If set to false, the tables produced will have
no borders. The default value is true.

-0 bare=boolean
The HTML output driver ordinarily outputs a complete HTML document. If
set to true, the driver instead outputs only what would normally be the contents
of the body element. The default value is false.

-0 css=boolean
Use cascading style sheets. Cascading style sheets give an improved appearance
and can be used to produce pages which fit a certain web site’s style. The default
value is true.

3.7 OpenDocument Output Options

To produce output as an OpenDocument text (ODT) document, specify -o file on the
pspPP command line. If file does not end in .odt, you must also specify -0 format=odt.

ODT support is only available if your installation of PSPP was compiled with the libxml2
library.

The OpenDocument output format does not have any configurable options.

3.8 Comma-Separated Value Output Options

To produce output in comma-separated value (CSV) format, specify -o file on the PSPP
command line, optionally followed by any of the options shown in the table below to cus-
tomize the output format.

Chapter 3: Invoking pspp 10

-0 format=csv
Specify the output format. This is only necessary if the file name given on -o
does not end in .csv.

-0 separator=field-separator
Sets the character used to separate fields. Default: a comma (*,’).

-0 quote=qualifier
Sets qualifier as the character used to quote fields that contain white space,
the separator (or any of the characters in the separator, if it contains more
than one character), or the quote character itself. If qualifier is longer than one
character, only the first character is used; if qualifier is the empty string, then
fields are never quoted.

-0 titles=boolean
Whether table titles (brief descriptions) should be printed. Default: on.

-0 captions=boolean
Whether table captions (more extensive descriptions) should be printed. De-
fault: on.

The CSV format used is an extension to that specified in RFC 4180:

Tables Each table row is output on a separate line, and each column is output as a
field. The contents of a cell that spans multiple rows or columns is output only
for the top-left row and column; the rest are output as empty fields.

Titles When a table has a title and titles are enabled, the title is output just above
the table as a single field prefixed by ‘Table:’.

Captions When a table has a caption and captions are enabled, the caption is output
just below the table as a single field prefixed by ‘Caption:’.

Footnotes Within a table, footnote markers are output as bracketed letters following the
cell’s contents, e.g. ‘[al’, ‘[b]’, ... The footnotes themselves are output fol-
lowing the body of the table, as a separate two-column table introduced with a
line that says ‘Footnotes:’. Each row in the table represent one footnote: the
first column is the marker, the second column is the text.

Text Text in output is printed as a field on a line by itself. The TITLE and SUBTI-
TLE produce similar output, prefixed by ‘Title:’ or ‘Subtitle:’, respectively.

Messages Errors, warnings, and notes are printed the same way as text.
Charts Charts are not included in CSV output.

Successive output items are separated by a blank line.

11

4 Invoking psppire

4.1 The graphic user interface

The PSPPIRE graphic user interface for PSPP can perform all functionality of the command
line interface. In addition it gives an instantaneous view of the data, variables and statistical
output.

The graphic user interface can be started by typing psppire at a command prompt.
Alternatively many systems have a system of interactive menus or buttons from which
psppire can be started by a series of mouse clicks.

Once the principles of the PSPP system are understood, the graphic user interface is
designed to be largely intuitive, and for this reason is covered only very briefly by this
manual.

12

5 Using PSPP

PSPP is a tool for the statistical analysis of sampled data. You can use it to discover patterns
in the data, to explain differences in one subset of data in terms of another subset and to
find out whether certain beliefs about the data are justified. This chapter does not attempt
to introduce the theory behind the statistical analysis, but it shows how such analysis can
be performed using PSPP.

For the purposes of this tutorial, it is assumed that you are using PSPP in its interactive
mode from the command line. However, the example commands can also be typed into a
file and executed in a post-hoc mode by typing ‘pspp file-name’ at a shell prompt, where
file-name is the name of the file containing the commands. Alternatively, from the graphical
interface, you can select File =+ New — Syntax to open a new syntax window and use the
Run menu when a syntax fragment is ready to be executed. Whichever method you choose,
the syntax is identical.

When using the interactive method, PSPP tells you that it’s waiting for your data with
a string like PSPP> or data>. In the examples of this chapter, whenever you see text like
this, it indicates the prompt displayed by PSPP, not something that you should type.

Throughout this chapter reference is made to a number of sample data files. So that
you can try the examples for yourself, you should have received these files along with your
copy of Pspp.!

Please note: Normally these files are installed in the directory
/usr/local/share/pspp/examples. If however your system administrator or
operating system vendor has chosen to install them in a different location, you
will have to adjust the examples accordingly.

5.1 Preparation of Data Files

Before analysis can commence, the data must be loaded into PSPP and arranged such that
both PsPP and humans can understand what the data represents. There are two aspects of
data:

e The variables — these are the parameters of a quantity which has been measured or
estimated in some way. For example height, weight and geographic location are all
variables.

e The observations (also called ‘cases’) of the variables — each observation represents an
instance when the variables were measured or observed.

For example, a data set which has the variables height, weight, and name, might have the
observations:

1881 89.2 Ahmed
1192 107.01 Frank
1230 67 Julie

The following sections explain how to define a dataset.

I These files contain purely fictitious data. They should not be used for research purposes.

Chapter 5: Using PSPP 13

5.1.1 Defining Variables

Variables come in two basic types, viz: numeric and string. Variables such as age, height
and satisfaction are numeric, whereas name is a string variable. String variables are best
reserved for commentary data to assist the human observer. However they can also be used
for nominal or categorical data.

The following example defines two variables forename and height, and reads data into
them by manual input:

PSPP> data list list /forename (A12) height.
PSPP> begin data.

data> Ahmed 188

data> Bertram 167

data> Catherine 134.231

data> David 109.1

data> end data

PSPP>

There are several things to note about this example.

e The words ‘data list list’ are an example of the DATA LIST command. See
Section 8.5 [DATA LIST], page 64. It tells PSPP to prepare for reading data. The
word ‘list’ intentionally appears twice. The first occurrence is part of the DATA LIST
call, whilst the second tells PsPP that the data is to be read as free format data with
one record per line.

e The ‘/’ character is important. It marks the start of the list of variables which you
wish to define.

e The text ‘forename’ is the name of the first variable, and ‘(A12)’ says that the variable
forename is a string variable and that its maximum length is 12 bytes. The second
variable’s name is specified by the text ‘height’. Since no format is given, this variable
has the default format. Normally the default format expects numeric data, which
should be entered in the locale of the operating system. Thus, the example is correct
for English locales and other locales which use a period (‘.”) as the decimal separator.
However if you are using a system with a locale which uses the comma (‘,’) as the
decimal separator, then you should in the subsequent lines substitute ‘.’ with °,’.
Alternatively, you could explicitly tell PsPP that the height variable is to be read
using a period as its decimal separator by appending the text ‘DOT8.3’ after the word
‘height’. For more information on data formats, see Section 6.7.4 [Input and Output
Formats|, page 32.

e Normally, PSPP displays the prompt PSPP> whenever it’s expecting a command. How-
ever, when it’s expecting data, the prompt changes to data> so that you know to enter
data and not a command.

e At the end of every command there is a terminating ‘.’ which tells PSPP that the end
of a command has been encountered. You should not enter ‘.’ when data is expected
(ie. when the data> prompt is current) since it is appropriate only for terminating
commands.

5.1.2 Listing the data
Once the data has been entered, you could type

Chapter 5: Using PSPP 14

PSPP> 1list /format=numbered.

to list the data. The optional text ‘/format=numbered’ requests the case numbers to be
shown along with the data. It should show the following output:

Data List
e e e +
|Case Number| forename|heightl|
e O fm———— +
I1 | Ahmed |188.00]1
|2 |Bertram |167.00]|
|13 |Catherine|134.23]|
|4 |David [109.10]
e Tt O +

Note that the numeric variable height is displayed to 2 decimal places, because the format
for that variable is ‘F8.2’. For a complete description of the LIST command, see Section 8.10
[LIST], page 74.

5.1.3 Reading data from a text file

The previous example showed how to define a set of variables and to manually enter the
data for those variables. Manual entering of data is tedious work, and often a file containing
the data will be have been previously prepared. Let us assume that you have a file called
mydata.dat containing the ascii encoded data:

Ahmed 188.00
Bertram 167.00
Catherine 134.23
David 109.10
Zachariah 113.02

You can can tell the DATA LIST command to read the data directly from this file instead of
by manual entry, with a command like:

PSPP> data list file=’mydata.dat’ list /forename (A12) height.

Notice however, that it is still necessary to specify the names of the variables and their
formats, since this information is not contained in the file. It is also possible to specify
the file’s character encoding and other parameters. For full details refer to see Section 8.5
[DATA LIST], page 64.

5.1.4 Reading data from a pre-prepared pPsSpP file

When working with other PSPP users, or users of other software which uses the PSPp data
format, you may be given the data in a pre-prepared PsPP file. Such files contain not only
the data, but the variable definitions, along with their formats, labels and other meta-data.
Conventionally, these files (sometimes called “system” files) have the suffix .sav, but that
is not mandatory. The following syntax loads a file called my-file.sav.

PSPP> get file=’my-file.sav’.

You will encounter several instances of this in future examples.

Chapter 5: Using PSPP 15

5.1.5 Saving data to a pspp file.

If you want to save your data, along with the variable definitions so that you or other Pspp
users can use it later, you can do this with the SAVE command.

The following syntax will save the existing data and variables to a file called my-new-
file.sav.

PSPP> save outfile=’my-new-file.sav’.

If my-new-file.sav already exists, then it will be overwritten. Otherwise it will be created.

5.1.6 Reading data from other sources

Sometimes it’s useful to be able to read data from comma separated text, from spreadsheets,
databases or other sources. In these instances you should use the GET DATA command (see
Section 9.4 [GET DATA], page 81).

5.1.7 Exiting PSPP

Use the FINISH command to exit PSPP:
PSPP> finish.

5.2 Data Screening and Transformation

Once data has been entered, it is often desirable, or even necessary, to transform it in some
way before performing analysis upon it. At the very least, it’s good practice to check for
errors.

5.2.1 Identifying incorrect data

Data from real sources is rarely error free. PSPP has a number of procedures which can be
used to help identify data which might be incorrect.

The DESCRIPTIVES command (see Section 15.1 [DESCRIPTIVES], page 151) is used
to generate simple linear statistics for a dataset. It is also useful for identifying potential
problems in the data. The example file physiology.sav contains a number of physiological
measurements of a sample of healthy adults selected at random. However, the data entry
clerk made a number of mistakes when entering the data. The following example illustrates
the use of DESCRIPTIVES to screen this data and identify the erroneous values:

PSPP> get file=’/usr/local/share/pspp/examples/physiology.sav’.
PSPP> descriptives sex, weight, height.

For this example, PSPP produces the following output:
Descriptive Statistics
B oo mm Fmmmm Fmmmm ettt +
| | NI Mean |Std Dev|Minimum|Maximum|
o oo m— o o o +
|Sex of subject 40| .45] .50|Male |Female |
|Weight in kilograms [40] 72.12| 26.70| -55.6] 92.1]|
|Height in millimeters|40|1677.12| 262.87]| 1791 1903
|Valid N (listwise) 140] | | | |
|[Missing N (listwise) | Ol | | | |
e B B o o +

The most interesting column in the output is the minimum value. The weight variable
has a minimum value of less than zero, which is clearly erroneous. Similarly, the height

Chapter 5: Using PSPP 16

variable’s minimum value seems to be very low. In fact, it is more than 5 standard deviations
from the mean, and is a seemingly bizarre height for an adult person.

We can look deeper into these discrepancies by issuing an additional EXAMINE command:
PSPP> examine height, weight /statistics=extreme(3).

This command produces the following additional output (in part):

Extreme Values

B ——— ————t—————4

| |Case Number|Valuel

e + ————m————t
|Height in millimeters Highest 11| 14| 1903]
| 2| 15| 1884|
| 3l 12| 1802|
I ettt e T +o——— +
| Lowest 1] 30| 179
| 2| 31| 1598|
| 31 28| 16011
+-—- - ———+ ——— - +
|Weight in kilograms Highest 1| 13| 92.1]
| 2| 5] 92.1]
[3] 171 91.7]
| —————+ e
| Lowest 1| 38|-55.61
| 2| 39| 54.5|
| 3l 33| 55.4]|
+-—- ———— o +-———— +

From this new output, you can see that the lowest value of height is 179 (which we suspect
to be erroneous), but the second lowest is 1598 which we know from DESCRIPTIVES is within
1 standard deviation from the mean. Similarly, the lowest value of weight is negative, but
its second lowest value is plausible. This suggests that the two extreme values are outliers
and probably represent data entry errors.

The output also identifies the case numbers for each extreme value, so we can see that
cases 30 and 38 are the ones with the erroneous values.

5.2.2 Dealing with suspicious data

If possible, suspect data should be checked and re-measured. However, this may not always
be feasible, in which case the researcher may decide to disregard these values. PSPP has
a feature whereby data can assume the special value ‘SYSMIS’, and will be disregarded
in future analysis. See Section 6.6 [Missing Observations|, page 29. You can set the two
suspect values to the ‘SYSMIS’ value using the RECODE command.

PSPP> recode height (179 = SYSMIS).
PSPP> recode weight (LOWEST THRU O = SYSMIS).

The first command says that for any observation which has a height value of 179, that
value should be changed to the SYSMIS value. The second command says that any weight
values of zero or less should be changed to SYSMIS. From now on, they will be ignored in
analysis. For detailed information about the RECODE command see Section 12.7 [RECODE],
page 122.

If you now re-run the DESCRIPTIVES or EXAMINE commands from the previous section,
you will see a data summary with more plausible parameters. You will also notice that the
data summaries indicate the two missing values.

Chapter 5: Using PSPP 17

5.2.3 Inverting negatively coded variables

Data entry errors are not the only reason for wanting to recode data. The sample file
hotel.sav comprises data gathered from a customer satisfaction survey of clients at a par-
ticular hotel. The following commands load the file and display its variables and associated
data:

PSPP> get file=’/usr/local/share/pspp/examples/hotel.sav’.
PSPP> display dictionary.

It yields the following output:

Variables

to—— - + —+- —4————- o pomm e o +
| | | | Measurement| | | | Print| Write |
| Name | Position]| Label | Level | RolelWidth|Alignment|Format| Format |
T e + —+- ————— et o s o +
lvi | 11T am |Ordinal | Input | 8|Right IF8.0 |F8.0 |
| | |satisfied | | | | I |
[[|with the | I I [I [I
| | |level of | | | | | | |
| | | service | | | | | | |
[v2 | 2|The value for|Ordinal | Input | 8|Right |[F8.0 |F8.0 |
| | |money was | | | I I |
| | | good | | | | | |
[v3 | 3|The staff |Ordinal | Input | 8|Right IF8.0 |F8.0 |
		were slow in						
		responding						
vd	4	My concerns	Ordinal	Input	8	Right	[F8.0	F8.0
		were dealt			I			
[[lwith in an	I	I [[[
	lefficient							
		manner		I I I	I			
vs	5	There was too	Ordinal	Input	8	Right	[F8.0	F8.0
		much noise inl						
		the rooms						
e e Fommmmm ——————t oo + e

Value Labels
e + ——————————— +
|Variable Value | Label
B T it L o +
|T am satisfied with the level of service 1|Strongly Disagreel
| 2|Disagree |
| 3|No Opinion |
| 4|Agree
| 5|Strongly Agree |
+-—- -—- -—- + —————m - +
The value for money was good 1	Strongly Disagreel
2	Disagree
3	No Opinion
4	Agree
5	Strongly Agree
Bt Hmm +	
The staff were slow in responding 1	Strongly Disagreel

| 2|Disagree |
| 3|No Opinion |
| 4|Agree

| 5|Strongly Agree |

+——- -—- -—- -—- + ———————————- +

Chapter 5: Using PSPP 18

[My concerns were dealt with in an efficient manner 1	Strongly Disagreel
2	Disagree
3	No Opinion
4	Agree

| 5|Strongly Agree |
BT o +
| There was too much noise in the rooms 1|Strongly Disagreel
| 2|Disagree |
| 3|No Opinion |
| 4|Agree

| 5|Strongly Agree |

+-—- -—- -—- + ——————————— +

The output shows that all of the variables vl through v5 are measured on a 5 point Likert
scale, with 1 meaning “Strongly disagree” and 5 meaning “Strongly agree”. However, some
of the questions are positively worded (v1, v2, v4) and others are negatively worded (v3, v5).
To perform meaningful analysis, we need to recode the variables so that they all measure
in the same direction. We could use the RECODE command, with syntax such as:

recode v3 (1 =5) (2 =4) (4=2) (6 =1).

However an easier and more elegant way uses the COMPUTE command (see Section 12.3
[COMPUTE], page 114). Since the variables are Likert variables in the range (1 ... 5),
subtracting their value from 6 has the effect of inverting them:

compute var = 6 - var.

The following section uses this technique to recode the variables v3 and v5. After applying
COMPUTE for both variables, all subsequent commands will use the inverted values.

5.2.4 Testing data consistency

A sensible check to perform on survey data is the calculation of reliability. This gives
the statistician some confidence that the questionnaires have been completed thoughtfully.
If you examine the labels of variables vl, v3 and v4, you will notice that they ask very
similar questions. One would therefore expect the values of these variables (after recoding)
to closely follow one another, and we can test that with the RELIABILITY command (see
Section 15.18 [RELIABILITY], page 221). The following example shows a PSPP session
where the user recodes negatively scaled variables and then requests reliability statistics for
vl, v3, and v4.

PSPP> get file=’/usr/local/share/pspp/examples/hotel.sav’.
PSPP> compute v3 = 6 - v3.

PSPP> compute v56 = 6 - v5.

PSPP> reliability vi, v3, v4.

This yields the following output:
Scale: ANY

Case Processing Summary

O - +
|Cases | N|Percent|
B s +
[Valid |17] 100.0%|
|Excluded| 0Ol 0%

|Total |17] 100.0%]|
R oo mm +

Chapter 5: Using PSPP 19

Reliability Statistics

oo + -+
|Cronbach’s Alpha|N of Items|
R + -+
| .81l 31
R + -+

As a rule of thumb, many statisticians consider a value of Cronbach’s Alpha of 0.7 or
higher to indicate reliable data.

Here, the value is 0.81, which suggests a high degree of reliability among variables v1,
v3 and v4, so the data and the recoding that we performed are vindicated.

5.2.5 Testing for normality

Many statistical tests rely upon certain properties of the data. One common property, upon
which many linear tests depend, is that of normality — the data must have been drawn
from a normal distribution. It is necessary then to ensure normality before deciding upon
the test procedure to use. One way to do this uses the EXAMINE command.

In the following example, a researcher was examining the failure rates of equipment
produced by an engineering company. The file repairs.sav contains the mean time be-
tween failures (mtbf) of some items of equipment subject to the study. Before performing
linear analysis on the data, the researcher wanted to ascertain that the data is normally
distributed.

PSPP> get file=’/usr/local/share/pspp/examples/repairs.sav’.
PSPP> examine mtbf
/statistics=descriptives.

This produces the following output:

Descriptives

4 -— — — ——t +
| | | std. |
| |Statistic| Error |
T— _— _— S — RS TR —— +
|Mean time between Mean | 8.78]| 1.10]
|failures (months) = ----- —+- ———t- +
| 95% Confidence Interval Lower | 6.53| |
| for Mean Bound | |

| Upper | 11.04| |
| Bound | |

R — —— e +
| 5% Trimmed Mean | 8.20]| |
[—+- ———+- +
| Median | 8.29| |
X - —+- ——te —+
| Variance | 36.34| |
| B o +
| Std. Deviation | 6.03] |
| e o tommm +
| Minimum | 1.63| |
I e o R +
| Maximum | 26.47| |
I —+- ———+- +
| Range | 24.84| |
e -— —+- ——t —+

Chapter 5: Using PSPP 20

| Interquartile Range | 6.03| |
N e -— —+- ———t- -+
| Skewness | 1.65] 43|
| e -— —+- ——t- -+
| Kurtosis | 3.41]| 83|
A e e +

A normal distribution has a skewness and kurtosis of zero. The skewness of mtbf in
the output above makes it clear that the mtbf figures have a lot of positive skew and
are therefore not drawn from a normally distributed variable. Positive skew can often be
compensated for by applying a logarithmic transformation, as in the following continuation
of the example:

PSPP> compute mtbf_ln = 1n (mtbf).
PSPP> examine mtbf_ln
/statistics=descriptives.

which produces the following additional output:

Descriptives

O -— -— B B +
| |Statistic|Std. Error|
O -— -— -— o B +
|mtbf_1n Mean | 1.95] 13|
| e + —————t -———+
95% Confidence Interval for Mean Lower Bound]| 1.69] |

Upper Bound| 2.22| |

- -— -— -— o B +

5% Trimmed Mean | 1.96] |

- ——————————— -— + _—— ——

Median I 2.11| |
—— fmmm —_—

<
)
o}
H.
5
Q
)
S
©

|
|
|
|
|
|
|
|
| e o + —-——+
| Std. Deviation | 701 |
| - -— -— -— + —_— —-—
| Minimum | 49| |
| - -— -— e e +
| Maximum | 3.28| |
| - -_— -_— -_— e e +
| Range I 2.79| |
| - Y + ———— —
| Interquartile Range | 88| |
| e et S t
| Skewness | -.37]| .43]
| e —————————————— e + —_—
| Kurtosis | 01l 83|
+——- -— -— -— e i +

The COMPUTE command in the first line above performs the logarithmic transformation:
compute mtbf_1n = 1ln (mtbf).

Rather than redefining the existing variable, this use of COMPUTE defines a new variable
mtbf_In which is the natural logarithm of mtbf. The final command in this example calls
EXAMINE on this new variable. The results show that both the skewness and kurtosis for
mtbf_In are very close to zero. This provides some confidence that the mtbf_In variable is
normally distributed and thus safe for linear analysis. In the event that no suitable trans-
formation can be found, then it would be worth considering an appropriate non-parametric

Chapter 5: Using PSPP 21

test instead of a linear one. See Section 15.12 [NPAR TESTS], page 203, for information
about non-parametric tests.

5.3 Hypothesis Testing

One of the most fundamental purposes of statistical analysis is hypothesis testing. Re-
searchers commonly need to test hypotheses about a set of data. For example, she might
want to test whether one set of data comes from the same distribution as another, or whether
the mean of a dataset significantly differs from a particular value. This section presents just
some of the possible tests that pspp offers.

The researcher starts by making a null hypothesis. Often this is a hypothesis which he
suspects to be false. For example, if he suspects that A is greater than B he will state the
null hypothesis as A = B.?

The p-value is a recurring concept in hypothesis testing. It is the highest acceptable
probability that the evidence implying a null hypothesis is false, could have been obtained
when the null hypothesis is in fact true. Note that this is not the same as “the probability
of making an error” nor is it the same as “the probability of rejecting a hypothesis when it
is true”.

5.3.1 Testing for differences of means

A common statistical test involves hypotheses about means. The T-TEST command is used
to find out whether or not two separate subsets have the same mean.

A researcher suspected that the heights and core body temperature of persons might be
different depending upon their sex. To investigate this, he posed two null hypotheses based
on the data from physiology.sav previously encountered:

e The mean heights of males and females in the population are equal.

e The mean body temperature of males and females in the population are equal.

For the purposes of the investigation the researcher decided to use a p-value of 0.05.

In addition to the T-test, the T-TEST command also performs the Levene test for equal
variances. If the variances are equal, then a more powerful form of the T-test can be
used. However if it is unsafe to assume equal variances, then an alternative calculation is
necessary. PSPP performs both calculations.

For the height variable, the output shows the significance of the Levene test to be 0.33
which means there is a 33% probability that the Levene test produces this outcome when
the variances are equal. Had the significance been less than 0.05, then it would have been
unsafe to assume that the variances were equal. However, because the value is higher than
0.05 the homogeneity of variances assumption is safe and the “Equal Variances” row (the
more powerful test) can be used. Examining this row, the two tailed significance for the
height t-test is less than 0.05, so it is safe to reject the null hypothesis and conclude that
the mean heights of males and females are unequal.

For the temperature variable, the significance of the Levene test is 0.58 so again, it is
safe to use the row for equal variances. The equal variances row indicates that the two
tailed significance for temperature is 0.20. Since this is greater than 0.05 we must reject

2 This example assumes that it is already proven that B is not greater than A.

Chapter 5: Using PSPP

22

the null hypothesis and conclude that there is insufficient evidence to suggest that the body

temperature of male and female persons are different.

The syntax for this analysis is:

PSPP> get file=’/usr/local/share/pspp/examples/physiology.sav’.

PSPP> recode height (179 = SYSMIS).

PSPP> t-test group=sex(0,1) /variables = height temperature.

PSPP produces the following output for this syntax:

Group Statistics

A o e Fmmm e e +

[(. | Std. | S.E. |

| Group | N| Mean | Deviation | Mean |

= e b = ———t- -+

|Height in millimeters Male [22]1796.49] 49.71] 10.60]

[Female|17[1610.77]| 25.43] 6.17]

+——= -— -— s St R Fmmm Fmmm +

| Internal body temperature in degrees Male [22]| 36.68]| 1.95] .42

|Celcius Female|18| 37.43| 1.61] .38

+-—= -— -— et St R Fommmmm o Fmmm +
Independent Samples Test

A e e T

| | Levene’s |

| | Test for |

| | Equality |

| | of |

| | Variances| T-Test for Equality of Means

| o= +————- +-———- o o Fom +

| | | | | I I | |

| | I | | I I | |

| I | | | I I | |

| | I | | I | | |

| | I | | | sig. | | |

| | I | | | (2- | Mean |Std. Errorl|

| | F | Sig.| t | df |tailed)|Difference|Differencel

o et SR +- e e pmmmm o pommm o +

|Height in Equal | .97 .331114.02|37.00] .000] 185.72] 13.24|

Imillimeters variances| | | | I I |

| assumed | | | | I I | |

| Equal | I 115.15132.71]| .000| 185.72| 12.26]

| variances| | | | | | |

| not | I | | | | |

| assumed | | | | I | | |

e + e + o m e e +

| Internal Equal | .31] .581]-1.31138.00] .198] -.75| .57

| body variances| | | | | I |

| temperature assumed | | | | I | |

|in degrees Equal I I [-1.33137.99]| .1901 -.75| .56

|Celcius variances| I | | I | |

| not | I | | I I |

| assumed | I | | I | | |

e e S e o Fmmm Fmm e +

+
|
|
|
|
|
|
|

——— 4
|
|
|
|
|
|
|
|
|

+

Chapter 5: Using PSPP 23

|

|

| Fom +
	95%
	Confidence
	Interval of
	the
	Difference
+————— +o———— +	
	Lower
. + R —	
Height in Equal 1158.88]212.55]	
Imillimeters variances	

| assumed | | |
| Equal 1160.761210.67|
variances		
not		
assumed		
- -_— + + -+
| Internal Equal | -1.91] .41
|body variances| | |
| temperature assumed | |

|in degrees Equal | -1.89] .39]
|Celcius variances| |

| not | | |
| assumed | | |
+——- -— + + -+

The T-TEST command tests for differences of means. Here, the height variable’s two
tailed significance is less than 0.05, so the null hypothesis can be rejected. Thus, the
evidence suggests there is a difference between the heights of male and female persons.
However the significance of the test for the temperature variable is greater than 0.05 so the
null hypothesis cannot be rejected, and there is insufficient evidence to suggest a difference
in body temperature.

5.3.2 Linear Regression

Linear regression is a technique used to investigate if and how a variable is linearly related
to others. If a variable is found to be linearly related, then this can be used to predict
future values of that variable.

In the following example, the service department of the company wanted to be able to
predict the time to repair equipment, in order to improve the accuracy of their quotations.
It was suggested that the time to repair might be related to the time between failures and
the duty cycle of the equipment. The p-value of 0.1 was chosen for this investigation. In
order to investigate this hypothesis, the REGRESSION command was used. This command
not only tests if the variables are related, but also identifies the potential linear relationship.
See Section 15.17 [REGRESSION], page 219.

A first attempt includes duty_cycle:

PSPP> get file=’/usr/local/share/pspp/examples/repairs.sav’.
PSPP> regression /variables = mtbf duty_cycle /dependent = mttr.
This attempt yields the following output (in part):

Coefficients (Mean time to repair (hours))
+-—- -— ———4- + -—- —+————- +-———+

Chapter 5: Using PSPP

+___ [Rp——

| (Constant)

|Mean time between
|failures (months)

|Ratio of working to non-

|working time

| Unstandardized | Standardized | | |
| Coefficients | Coefficients | | |
+-——- o o + | |
| B | Std. Errorl Beta | t |ISig.|
e + -— + -— —f————— et
10.59] 3.11]	.00	3.40].002		
3.02	.20] .95114.881.000]			
-1.12] 3.69]	-.02	-.30].763]		
R B e e e

24

The coefficients in the above table suggest that the formula mttr = 9.81 4 3.1 x mtbf +
1.09 x duty_cycle can be used to predict the time to repair. However, the significance value
for the duty_cycle coefficient is very high, which would make this an unsafe predictor. For
this reason, the test was repeated, but omitting the duty_cycle variable:

PSPP> regression /variables =

This second try produces the following output (in part):

mtbf /dependent =

mttr.

Coefficients (Mean time to repair (hours))

+___ [

| (Constant)

|Mean time between
|failures (months)

—t———— + -_— —t————— f———t
| Unstandardized | Standardized | | |
| Coefficients | Coefficients | | |
R + + -— -+ |
| B | Std. Error | Beta | t ISig.|
N + + -_— —————— +———
| 9.90] 2.10] .00| 4.71].000]|
I 3.01| .20] .94115.211.000]
|

—————————————— do————————+

This time, the significance of all coefficients is no higher than 0.06, suggesting that at
the 0.06 level, the formula mttr = 10.5 + 3.11 x mtbf is a reliable predictor of the time to

repair.

25

6 The PsSPP language

This chapter discusses elements common to many PSPP commands. Later chapters describe
individual commands in detail.

6.1 Tokens

PSPP divides most syntax file lines into series of short chunks called tokens. Tokens are then
grouped to form commands, each of which tells PSPP to take some action—read in data,
write out data, perform a statistical procedure, etc. Each type of token is described below.

Identifiers Identifiers are names that typically specify variables, commands, or subcom-

Keywords

Numbers

Strings

mands. The first character in an identifier must be a letter, ‘#’, or ‘@’. The
remaining characters in the identifier must be letters, digits, or one of the fol-
lowing special characters:

_$#o

Identifiers may be any length, but only the first 64 bytes are significant. Iden-
tifiers are not case-sensitive: foobar, Foobar, FooBar, FOOBAR, and FoObaR are
different representations of the same identifier.

Some identifiers are reserved. Reserved identifiers may not be used in any con-
text besides those explicitly described in this manual. The reserved identifiers
are:

ALL AND BY EQ GE GT LE LT NE NOT OR TO WITH

Keywords are a subclass of identifiers that form a fixed part of command syntax.
For example, command and subcommand names are keywords. Keywords may
be abbreviated to their first 3 characters if this abbreviation is unambiguous.
(Unique abbreviations of 3 or more characters are also accepted: ‘FRE’, ‘FREQ’,
and ‘FREQUENCIES’ are equivalent when the last is a keyword.)

Reserved identifiers are always used as keywords. Other identifiers may be used
both as keywords and as user-defined identifiers, such as variable names.

Numbers are expressed in decimal. A decimal point is optional. Numbers may
be expressed in scientific notation by adding ‘e’ and a base-10 exponent, so that
‘1.234e3’ has the value 1234. Here are some more examples of valid numbers:

-5 3.14159265359 1e100 -.707 8945.
Negative numbers are expressed with a ‘=’ prefix. However, in situations where
a literal ‘-’ token is expected, what appears to be a negative number is treated
as ‘=’ followed by a positive number.
No white space is allowed within a number token, except for horizontal white
space between ‘-’ and the rest of the number.
The last example above, ‘8945." is interpreted as two tokens, ‘8945’ and ‘.’ if
it is the last token on a line. See Section 6.2 [Forming commands of tokens],
page 26.

Strings are literal sequences of characters enclosed in pairs of single quotes (‘?”)
or double quotes (‘"’). To include the character used for quoting in the string,

Chapter 6: The PSPP language 26

double it, e.g. ‘’it’’s an apostrophe’’. White space and case of letters are
significant inside strings.

Strings can be concatenated using ‘+’, so that ‘"a" + ’b’ + ’¢’’ is equivalent
to ‘’abc’’. So that a long string may be broken across lines, a line break may
precede or follow, or both precede and follow, the ‘+’. (However, an entirely
blank line preceding or following the ‘+’ is interpreted as ending the current
command.)

Strings may also be expressed as hexadecimal character values by prefixing
the initial quote character by ‘x’ or ‘X’. Regardless of the syntax file or ac-
tive dataset’s encoding, the hexadecimal digits in the string are interpreted as
Unicode characters in UTF-8 encoding.

Individual Unicode code points may also be expressed by specifying the hex-
adecimal code point number in single or double quotes preceded by ‘u’ or ‘U’.
For example, Unicode code point U+1D11E, the musical G clef character, could
be expressed as U’1D11E’. Invalid Unicode code points (above U+10FFFF or
in between U+D800 and U+DFFF) are not allowed.

When strings are concatenated with ‘+’; each segment’s prefix is considered
individually. For example, *The G clef symbol is:’ + u"1d1le" + "." inserts
a G clef symbol in the middle of an otherwise plain text string.

Punctuators and Operators
These tokens are the punctuators and operators:

, /= () + =%/ %k < <=<>>> "=§ |

Most of these appear within the syntax of commands, but the period (*.”)
punctuator is used only at the end of a command. It is a punctuator only as
the last character on a line (except white space). When it is the last non-space
character on a line, a period is not treated as part of another token, even if it
would otherwise be part of, e.g., an identifier or a floating-point number.

6.2 Forming commands of tokens

Most PSPP commands share a common structure. A command begins with a command
name, such as FREQUENCIES, DATA LIST, or N OF CASES. The command name may be ab-
breviated to its first word, and each word in the command name may be abbreviated to its
first three or more characters, where these abbreviations are unambiguous.

The command name may be followed by one or more subcommands. Each subcommand
begins with a subcommand name, which may be abbreviated to its first three letters. Some
subcommands accept a series of one or more specifications, which follow the subcommand
name, optionally separated from it by an equals sign (‘="). Specifications may be separated
from each other by commas or spaces. Each subcommand must be separated from the next
(if any) by a forward slash (‘/7).

There are multiple ways to mark the end of a command. The most common way is to
end the last line of the command with a period (‘.”) as described in the previous section
(see Section 6.1 [Tokens], page 25). A blank line, or one that consists only of white space

or comments, also ends a command.

Chapter 6: The PSPP language 27

6.3 Syntax Variants

There are three variants of command syntax, which vary only in how they detect the end
of one command and the start of the next.

In interactive mode, which is the default for syntax typed at a command prompt, a
period as the last non-blank character on a line ends a command. A blank line also ends a
command.

In batch mode, an end-of-line period or a blank line also ends a command. Additionally,
it treats any line that has a non-blank character in the leftmost column as beginning a new
command. Thus, in batch mode the second and subsequent lines in a command must be
indented.

Regardless of the syntax mode, a plus sign, minus sign, or period in the leftmost column
of a line is ignored and causes that line to begin a new command. This is most useful in
batch mode, in which the first line of a new command could not otherwise be indented, but
it is accepted regardless of syntax mode.

The default mode for reading commands from a file is auto mode. It is the same as
batch mode, except that a line with a non-blank in the leftmost column only starts a new
command if that line begins with the name of a PSPP command. This correctly interprets
most valid PSPP syntax files regardless of the syntax mode for which they are intended.

The --interactive (or -i) or --batch (or -b) options set the syntax mode for files
listed on the PsPP command line. See Section 3.1 [Main Options], page 3, for more details.

6.4 Types of Commands

Commands in PsPP are divided roughly into six categories:

Utility commands
Set or display various global options that affect PSPP operations. May appear
anywhere in a syntax file. See Chapter 17 [Utility commands], page 262.

File definition commands
Give instructions for reading data from text files or from special binary “system
files”. Most of these commands replace any previous data or variables with new
data or variables. At least one file definition command must appear before the
first command in any of the categories below. See Chapter 8 [Data Input and
Output], page 62.

Input program commands
Though rarely used, these provide tools for reading data files in arbitrary textual
or binary formats. See Section 8.9 [INPUT PROGRAM], page 71.

Transformations
Perform operations on data and write data to output files. Transformations are
not carried out until a procedure is executed.

Restricted transformations
Transformations that cannot appear in certain contexts. See Section 6.5 [Order
of Commands]|, page 28, for details.

Chapter 6: The PSPP language 28

Procedures
Analyze data, writing results of analyses to the listing file. Cause transforma-
tions specified earlier in the file to be performed. In a more general sense, a
procedure is any command that causes the active dataset (the data) to be read.

6.5 Order of Commands

PSPP does not place many restrictions on ordering of commands. The main restriction is
that variables must be defined before they are otherwise referenced. This section describes
the details of command ordering, but most users will have no need to refer to them.

PSPP possesses five internal states, called initial, input-program file-type, transformation,
and procedure states. (Please note the distinction between the INPUT PROGRAM and FILE
TYPE commands and the input-program and file-type states.)

PSPP starts in the initial state. Each successful completion of a command may cause a

state transition. Each type of command has its own rules for state transitions:
Utility commands

e Valid in any state.

e Do not cause state transitions. Exception: when N OF CASES is executed in

the procedure state, it causes a transition to the transformation state.

DATA LIST

e Valid in any state.

e When executed in the initial or procedure state, causes a transition to the
transformation state.

e Clears the active dataset if executed in the procedure or transformation
state.
INPUT PROGRAM
e Invalid in input-program and file-type states.
e Causes a transition to the intput-program state.
e Clears the active dataset.

FILE TYPE
e Invalid in intput-program and file-type states.
e Causes a transition to the file-type state.
e Clears the active dataset.
Other file definition commands
e Invalid in input-program and file-type states.
e Cause a transition to the transformation state.
e Clear the active dataset, except for ADD FILES, MATCH FILES, and UPDATE.
Transformations
e Invalid in initial and file-type states.
e Cause a transition to the transformation state.

Restricted transformations
e Invalid in initial, input-program, and file-type states.

Chapter 6: The PSPP language 29

e Cause a transition to the transformation state.

Procedures
e Invalid in initial, input-program, and file-type states.

e Cause a transition to the procedure state.

6.6 Handling missing observations

PSPP includes special support for unknown numeric data values. Missing observations are
assigned a special value, called the system-missing value. This “value” actually indicates the
absence of a value; it means that the actual value is unknown. Procedures automatically
exclude from analyses those observations or cases that have missing values. Details of
missing value exclusion depend on the procedure and can often be controlled by the user;
refer to descriptions of individual procedures for details.

The system-missing value exists only for numeric variables. String variables always have
a defined value, even if it is only a string of spaces.

Variables, whether numeric or string, can have designated user-missing values. Every
user-missing value is an actual value for that variable. However, most of the time user-
missing values are treated in the same way as the system-missing value.

For more information on missing values, see the following sections: Section 6.7 [Datasets|,
page 29, Section 11.13 [MISSING VALUES], page 103, Chapter 7 [Expressions|, page 44.
See also the documentation on individual procedures for information on how they handle
missing values.

6.7 Datasets

pspp works with data organized into datasets. A dataset consists of a set of variables, which
taken together are said to form a dictionary, and one or more cases, each of which has one
value for each variable.

At any given time PSPP has exactly one distinguished dataset, called the active dataset.
Most PSPP commands work only with the active dataset. In addition to the active dataset,
PSPP also supports any number of additional open datasets. The DATASET commands can
choose a new active dataset from among those that are open, as well as create and destroy
datasets (see Section 8.4 [DATASET], page 63).

The sections below describe variables in more detail.

6.7.1 Attributes of Variables
Each variable has a number of attributes, including:

Name An identifier, up to 64 bytes long. Each variable must have a different name.
See Section 6.1 [Tokens], page 25.

Some system variable names begin with ‘$’, but user-defined variables’ names
may not begin with ‘$’.

The final character in a variable name should not be ‘.’, because such an iden-
tifier will be misinterpreted when it is the final token on a line: F0O0. is di-
vided into two separate tokens, ‘FO0’ and ‘.’, indicating end-of-command. See
Section 6.1 [Tokens], page 25.

Chapter 6: The PSPP language 30

The final character in a variable name should not be ‘_’, because some such

identifiers are used for special purposes by PSPP procedures.

As with all PSPP identifiers, variable names are not case-sensitive. PSPP capi-
talizes variable names on output the same way they were capitalized at their
point of definition in the input.

Type Numeric or string.

Width (string variables only) String variables with a width of 8 characters or fewer
are called short string variables. Short string variables may be used in a few
contexts where long string variables (those with widths greater than 8) are not
allowed.

Position =~ Variables in the dictionary are arranged in a specific order. DISPLAY can be
used to show this order: see Section 11.1 [DISPLAY], page 98.

Initialization
Either reinitialized to 0 or spaces for each case, or left at its existing value. See
Section 11.21 [LEAVE], page 107.

Missing values

Optionally, up to three values, or a range of values, or a specific value plus a
range, can be specified as user-missing values. There is also a system-missing
value that is assigned to an observation when there is no other obvious value for
that observation. Observations with missing values are automatically excluded
from analyses. User-missing values are actual data values, while the system-
missing value is not a value at all. See Section 6.6 [Missing Observations],
page 29.

Variable label
A string that describes the variable. See Section 11.7 [VARIABLE LABELS],
page 101.

Value label
Optionally, these associate each possible value of the variable with a string. See
Section 11.11 [VALUE LABELS], page 102.

Print format
Display width, format, and (for numeric variables) number of decimal places.
This attribute does not affect how data are stored, just how they are displayed.
Example: a width of 8, with 2 decimal places. See Section 6.7.4 [Input and
Output Formats], page 32.

Write format
Similar to print format, but used by the WRITE command (see Section 8.17
[WRITE], page 78).

Measurement level
One of the following:

Nominal Each value of a nominal variable represents a distinct category. The
possible categories are finite and often have value labels. The order
of categories is not significant. Political parties, US states, and

Chapter 6: The PSPP language 31

yes/no choices are nominal. Numeric and string variables can be
nominal.

Ordinal Ordinal variables also represent distinct categories, but their values
are arranged according to some natural order. Likert scales, e.g.
from strongly disagree to strongly agree, are ordinal. Data grouped
into ranges, e.g. age groups or income groups, are ordinal. Both nu-
meric and string variables can be ordinal. String values are ordered
alphabetically, so letter grades from A to F will work as expected,
but poor, satisfactory, excellent will not.

Scale Scale variables are ones for which differences and ratios are mean-
ingful. These are often values which have a natural unit attached,
such as age in years, income in dollars, or distance in miles. Only
numeric variables are scalar.

Variables created by COMPUTE and similar transformations, obtained from exter-
nal sources, etc., initially have an unknown measurement level. Any procedure
that reads the data will then assign a default measurement level. PSPP can
assign some defaults without reading the data:

e Nominal, if it’s a string variable.
e Nominal, if the variable has a WKDAY or MONTH print format.
e Scale, if the variable has a DOLLAR, CCA through CCE, or time or date
print format.
Otherwise, PSPP reads the data and decides based on its distribution:
e Nominal, if all observations are missing.
e Scale, if one or more valid observations are noninteger or negative.
e Scale, if no valid observation is less than 10.
e Scale, if the variable has 24 or more unique valid values. The value 24 is

the default and can be adjusted (see [SET SCALEMIN], page 271).

Finally, if none of the above is true, PSPP assigns the variable a nominal mea-
surement level.

Custom attributes

Role

User-defined associations between names and values. See Section 11.14 [VARI-
ABLE ATTRIBUTE], page 103.

The intended role of a variable for use in dialog boxes in graphical user inter-
faces. See Section 11.18 [VARIABLE ROLE], page 105.

6.7.2 Variables Automatically Defined by pspp

There are seven system variables. These are not like ordinary variables because system
variables are not always stored. They can be used only in expressions. These system
variables, whose values and output formats cannot be modified, are described below.

$CASENUM Case number of the case at the moment. This changes as cases are shuffled

around.

Chapter 6: The PSPP language 32

$DATE Date the PSPP process was started, in format A9, following the pattern DD-MMM-
YY.

$DATE11 Date the PSPP process was started, in format All, following the pattern
DD-MMM-YYYY.

$JDATE Number of days between 15 Oct 1582 and the time the PSPP process was started.
$LENGTH Page length, in lines, in format F11.
$SYSMIS System missing value, in format F1.

$TIME Number of seconds between midnight 14 Oct 1582 and the time the active
dataset was read, in format F20.

$WIDTH Page width, in characters, in format F3.

6.7.3 Lists of variable names

To refer to a set of variables, list their names one after another. Optionally, their names
may be separated by commas. To include a range of variables from the dictionary in the
list, write the name of the first and last variable in the range, separated by TO. For instance,
if the dictionary contains six variables with the names ID, X1, X2, GOAL, MET, and NEXTGOAL,
in that order, then X2 TO MET would include variables X2, GOAL, and MET.

Commands that define variables, such as DATA LIST, give TO an alternate meaning. With
these commands, TO define sequences of variables whose names end in consecutive integers.
The syntax is two identifiers that begin with the same root and end with numbers, separated
by TO. The syntax X1 TO X5 defines 5 variables, named X1, X2, X3, X4, and X5. The
syntax ITEMO0O08 TO ITEMO013 defines 6 variables, named ITEM0O008, ITEMO009, ITEM0O010,
ITEMOO11, ITEMOO12, and ITEMO0013. The syntaxes QUES001 TO QUES9 and QUES6 TO QUES3
are invalid.

After a set of variables has been defined with DATA LIST or another command with this
method, the same set can be referenced on later commands using the same syntax.

6.7.4 Input and Output Formats

An input format describes how to interpret the contents of an input field as a number or
a string. It might specify that the field contains an ordinary decimal number, a time or
date, a number in binary or hexadecimal notation, or one of several other notations. Input
formats are used by commands such as DATA LIST that read data or syntax files into the
PSPP active dataset.

Every input format corresponds to a default output format that specifies the formatting
used when the value is output later. It is always possible to explicitly specify an output
format that resembles the input format. Usually, this is the default, but in cases where the
input format is unfriendly to human readability, such as binary or hexadecimal formats, the
default output format is an easier-to-read decimal format.

Every variable has two output formats, called its print format and write format. Print
formats are used in most output contexts; write formats are used only by WRITE (see
Section 8.17 [WRITE], page 78). Newly created variables have identical print and write
formats, and FORMATS, the most commonly used command for changing formats (see

Chapter 6: The PSPP language 33

Section 11.10 [FORMATS], page 102), sets both of them to the same value as well. Thus,
most of the time, the distinction between print and write formats is unimportant.

Input and output formats are specified to PSPP with a format specification of the form
TYPEw or TYPEw.d, where TYPE is one of the format types described later, w is a field
width measured in columns, and d is an optional number of decimal places. If d is omitted,
a value of 0 is assumed. Some formats do not allow a nonzero d to be specified.

The following sections describe the input and output formats supported by PSPP.

6.7.4.1 Basic Numeric Formats

The basic numeric formats are used for input and output of real numbers in standard or
scientific notation. The following table shows an example of how each format displays
positive and negative numbers with the default decimal point setting:

Format 3141.59 -3141.59
F8.2 3141.59 -3141.59
COMMA9.2 3,141.59 -3,141.59
DOT9.2 3.141,59 -3.141,59
DOLLAR10.2 $3,141.59 -$3,141.59
PCT9.2 3141.59% -3141.597
ES8.1 3.1E+003 -3.1E+003

On output, numbers in F format are expressed in standard decimal notation with the
requested number of decimal places. The other formats output some variation on this style:

e Numbers in COMMA format are additionally grouped every three digits by inserting
a grouping character. The grouping character is ordinarily a comma, but it can be
changed to a period (see [SET DECIMAL]J, page 269).

e DOT format is like COMMA format, but it interchanges the role of the decimal point
and grouping characters. That is, the current grouping character is used as a decimal
point and vice versa.

e DOLLAR format is like COMMA format, but it prefixes the number with ‘$’.
e PCT format is like F format, but adds ‘%’ after the number.

e The E format always produces output in scientific notation.

On input, the basic numeric formats accept positive and numbers in standard decimal
notation or scientific notation. Leading and trailing spaces are allowed. An empty or all-
spaces field, or one that contains only a single period, is treated as the system missing
value.

In scientific notation, the exponent may be introduced by a sign (‘+’ or ‘=’), or by one of
the letters ‘e’ or ‘d’ (in uppercase or lowercase), or by a letter followed by a sign. A single
space may follow the letter or the sign or both.

On fixed-format DATA LIST (see Section 8.5.1 [DATA LIST FIXED], page 64) and in a
few other contexts, decimals are implied when the field does not contain a decimal point.
In F6.5 format, for example, the field 314159 is taken as the value 3.14159 with implied
decimals. Decimals are never implied if an explicit decimal point is present or if scientific
notation is used.

Chapter 6: The PSPP language 34

E and F formats accept the basic syntax already described. The other formats allow

some additional variations:

COMMA, DOLLAR, and DOT formats ignore grouping characters within the integer
part of the input field. The identity of the grouping character depends on the format.

DOLLAR format allows a dollar sign to precede the number. In a negative number,
the dollar sign may precede or follow the minus sign.

PCT format allows a percent sign to follow the number.

All of the basic number formats have a maximum field width of 40 and accept no more

than 16 decimal places, on both input and output. Some additional restrictions apply:

As input formats, the basic numeric formats allow no more decimal places than the field
width. As output formats, the field width must be greater than the number of decimal
places; that is, large enough to allow for a decimal point and the number of requested
decimal places. DOLLAR and PCT formats must allow an additional column for ‘$’
or ‘%’.

The default output format for a given input format increases the field width enough to
make room for optional input characters. If an input format calls for decimal places,
the width is increased by 1 to make room for an implied decimal point. COMMA,
DOT, and DOLLAR formats also increase the output width to make room for grouping
characters. DOLLAR and PCT further increase the output field width by 1 to make
room for ‘¢’ or ‘%’. The increased output width is capped at 40, the maximum field
width.

The E format is exceptional. For output, E format has a minimum width of 7 plus the
number of decimal places. The default output format for an E input format is an E
format with at least 3 decimal places and thus a minimum width of 10.

More details of basic numeric output formatting are given below:

Output rounds to nearest, with ties rounded away from zero. Thus, 2.5 is output as 3
in F1.0 format, and -1.125 as -1.13 in F5.1 format.

The system-missing value is output as a period in a field of spaces, placed in the
decimal point’s position, or in the rightmost column if no decimal places are requested.
A period is used even if the decimal point character is a comma.

A number that does not fill its field is right-justified within the field.

A number is too large for its field causes decimal places to be dropped to make room.
If dropping decimals does not make enough room, scientific notation is used if the field
is wide enough. If a number does not fit in the field, even in scientific notation, the
overflow is indicated by filling the field with asterisks (‘*’).

COMMA, DOT, and DOLLAR formats insert grouping characters only if space is
available for all of them. Grouping characters are never inserted when all decimal
places must be dropped. Thus, 1234.56 in COMMAJ5.2 format is output as ¢ 1235’
without a comma, even though there is room for one, because all decimal places were
dropped.

DOLLAR or PCT format drop the ‘¢’ or ‘%’ only if the number would not fit at all
without it. Scientific notation with ‘$’ or ‘%’ is preferred to ordinary decimal notation
without it.

Chapter 6: The PSPP language 35

e Except in scientific notation, a decimal point is included only when it is followed by
a digit. If the integer part of the number being output is 0, and a decimal point is
included, then PSPP ordinarily drops the zero before the decimal point. However, in
F, COMMA, or DOT formats, PSPP keeps the zero if SET LEADZERQ is set to ON (see [SET
LEADZERO], page 271).

In scientific notation, the number always includes a decimal point, even if it is not
followed by a digit.

e A negative number includes a minus sign only in the presence of a nonzero digit: -0.01
is output as ‘-=.01" in F4.2 format but as ¢ .0" in F4.1 format. Thus, a “negative
zero” never includes a minus sign.

e In negative numbers output in DOLLAR format, the dollar sign follows the negative
sign. Thus, -9.99 in DOLLARG.2 format is output as -$9.99.

e In scientific notation, the exponent is output as ‘E’ followed by ‘4’ or ‘-’ and exactly
three digits. Numbers with magnitude less than 10**-999 or larger than 10**999 are not
supported by most computers, but if they are supported then their output is considered
to overflow the field and they are output as asterisks.

e On most computers, no more than 15 decimal digits are significant in output, even
if more are printed. In any case, output precision cannot be any higher than input
precision; few data sets are accurate to 15 digits of precision. Unavoidable loss of
precision in intermediate calculations may also reduce precision of output.

e Special values such as infinities and “not a number” values are usually converted to
the system-missing value before printing. In a few circumstances, these values are
output directly. In fields of width 3 or greater, special values are output as however
many characters fit from +Infinity or -Infinity for infinities, from NaN for “not a
number,” or from Unknown for other values (if any are supported by the system). In
fields under 3 columns wide, special values are output as asterisks.

6.7.4.2 Custom Currency Formats

The custom currency formats are closely related to the basic numeric formats, but they
allow users to customize the output format. The SET command configures custom currency
formats, using the syntax

SET CCx="string".
where x is A, B, C, D, or E, and string is no more than 16 characters long.

string must contain exactly three commas or exactly three periods (but not both), except
that a single quote character may be used to “escape” a following comma, period, or single
quote. If three commas are used, commas are used for grouping in output, and a period is
used as the decimal point. Uses of periods reverses these roles.

The commas or periods divide string into four fields, called the negative prefix, prefix,
suffix, and negative suffix, respectively. The prefix and suffix are added to output whenever
space is available. The negative prefix and negative suffix are always added to a negative
number when the output includes a nonzero digit.

The following syntax shows how custom currency formats could be used to reproduce
basic numeric formats:

Chapter 6: The PSPP language 36

SET CCA="-,,,". /* Same as COMMA.

SET CCB="-...". /% Same as DOT.

SET CCC="-,$,,". /* Same as DOLLAR.

SET CCD="-,,%,". /* Like PCT, but groups with commas.

Here are some more examples of custom currency formats. The final example shows how

to use a single quote to escape a delimiter:

SET CCA=",EUR,,-". /% Euro.

SET CCB="(,USD ,,)". /* US dollar.

SET CCC="-.R$..". /* Brazilian real.
SET CCD="-,, NIS,". /* Israel shekel.
SET CCE="-.Rp’. ..". /* Indonesia Rupiah.

These formats would yield the following output:

Format 3145.59 -3145.59
CCA12.2 EUR3,145.59 EUR3,145.59-
CCB14.2 USD 3,145.59 (USD 3,145.59)

CCC11.2 R$3.145,59 -R$3.145,59
CCD13.2 3,145.59 NIS -3,145.59 NIS
CCE10.0 Rp. 3.146 -Rp. 3.146

The default for all the custom currency formats is ‘-, , ,’, equivalent to COMMA format.

6.7.4.3 Legacy Numeric Formats

The N and Z numeric formats provide compatibility with legacy file formats. They have
much in common:

Output is rounded to the nearest representable value, with ties rounded away from
Zero.

Numbers too large to display are output as a field filled with asterisks (‘*’).

The decimal point is always implicitly the specified number of digits from the right
edge of the field, except that Z format input allows an explicit decimal point.

Scientific notation may not be used.

The system-missing value is output as a period in a field of spaces. The period is
placed just to the right of the implied decimal point in Z format, or at the right end
in N format or in Z format if no decimal places are requested. A period is used even if
the decimal point character is a comma.

Field width may range from 1 to 40. Decimal places may range from 0 up to the field
width, to a maximum of 16.

When a legacy numeric format used for input is converted to an output format, it is
changed into the equivalent F format. The field width is increased by 1 if any decimal
places are specified, to make room for a decimal point. For Z format, the field width is
increased by 1 more column, to make room for a negative sign. The output field width
is capped at 40 columns.

Chapter 6: The PSPP language 37

N Format

The N format supports input and output of fields that contain only digits. On input, leading
or trailing spaces, a decimal point, or any other non-digit character causes the field to be
read as the system-missing value. As a special exception, an N format used on DATA LIST
FREE or DATA LIST LIST is treated as the equivalent F format.

On output, N pads the field on the left with zeros. Negative numbers are output like
the system-missing value.

7Z Format

The Z format is a “zoned decimal” format used on IBM mainframes. Z format encodes the
sign as part of the final digit, which must be one of the following:

0123456789
{ABCDEFGHI
}JKLMNOPQR

where the characters in each row represent digits 0 through 9 in order. Characters in the
first two rows indicate a positive sign; those in the third indicate a negative sign.

On output, Z fields are padded on the left with spaces. On input, leading and trailing
spaces are ignored. Any character in an input field other than spaces, the digit characters
above, and ‘.’ causes the field to be read as system-missing.

The decimal point character for input and output is always ‘.’, even if the decimal point
character is a comma (see [SET DECIMAL], page 269).

Nonzero, negative values output in 7 format are marked as negative even when no
nonzero digits are output. For example, -0.2 is output in Z1.0 format as ‘J’. The “negative
zero” value supported by most machines is output as positive.

6.7.4.4 Binary and Hexadecimal Numeric Formats

The binary and hexadecimal formats are primarily designed for compatibility with existing
machine formats, not for human readability. All of them therefore have a F format as
default output format. Some of these formats are only portable between machines with
compatible byte ordering (endianness) or floating-point format.

Binary formats use byte values that in text files are interpreted as special control func-
tions, such as carriage return and line feed. Thus, data in binary formats should not be
included in syntax files or read from data files with variable-length records, such as ordinary
text files. They may be read from or written to data files with fixed-length records. See
Section 8.8 [FILE HANDLE], page 68, for information on working with fixed-length records.

P and PK Formats

These are binary-coded decimal formats, in which every byte (except the last, in P format)
represents two decimal digits. The most-significant 4 bits of the first byte is the most-
significant decimal digit, the least-significant 4 bits of the first byte is the next decimal
digit, and so on.

In P format, the most-significant 4 bits of the last byte are the least-significant decimal
digit. The least-significant 4 bits represent the sign: decimal 15 indicates a negative value,
decimal 13 indicates a positive value.

Chapter 6: The PSPP language 38

Numbers are rounded downward on output. The system-missing value and numbers
outside representable range are output as zero.

The maximum field width is 16. Decimal places may range from 0 up to the number of
decimal digits represented by the field.

The default output format is an F format with twice the input field width, plus one
column for a decimal point (if decimal places were requested).

IB and PIB Formats

These are integer binary formats. IB reads and writes 2’s complement binary integers, and
PIB reads and writes unsigned binary integers. The byte ordering is by default the host
machine’s, but SET RIB may be used to select a specific byte ordering for reading (see
[SET RIB], page 269) and SET WIB, similarly, for writing (see [SET WIB]|, page 272).

The maximum field width is 8. Decimal places may range from 0 up to the number of
decimal digits in the largest value representable in the field width.

The default output format is an F format whose width is the number of decimal digits
in the largest value representable in the field width, plus 1 if the format has decimal places.

RB Format

This is a binary format for real numbers. By default it reads and writes the host machine’s
floating-point format, but SET RRB may be used to select an alternate floating-point
format for reading (see [SET RRB], page 269) and SET WRB, similarly, for writing (see
[SET WRBJ, page 272).

The recommended field width depends on the floating-point format. NATIVE (the
default format), IDL, IDB, VD, VG, and ZL formats should use a field width of 8. ISL,
ISB, VF, and ZS formats should use a field width of 4. Other field widths do not produce
useful results. The maximum field width is 8. No decimal places may be specified.

The default output format is F8.2.

PIBHEX and RBHEX Formats

These are hexadecimal formats, for reading and writing binary formats where each byte has
been recoded as a pair of hexadecimal digits.

A hexadecimal field consists solely of hexadecimal digits ‘0’...‘9” and ‘A’. . .‘F’. Upper-
case and lowercase are accepted on input; output is in uppercase.

Other than the hexadecimal representation, these formats are equivalent to PIB and
RB formats, respectively. However, bytes in PIBHEX format are always ordered with the
most-significant byte first (big-endian order), regardless of the host machine’s native byte
order or PSPP settings.

Field widths must be even and between 2 and 16. RBHEX format allows no decimal
places; PIBHEX allows as many decimal places as a PIB format with half the given width.

6.7.4.5 Time and Date Formats

In PsPP, a time is an interval. The time formats translate between human-friendly descrip-
tions of time intervals and PSPP’s internal representation of time intervals, which is simply
the number of seconds in the interval. PSPP has three time formats:

Chapter 6: The PSPP language 39

Time Format Template Example
MTIME MM:SS.ss 91:17.01
TIME hh:MM:SS.ss 01:31:17.01
DTIME DD HH:MM:SS.ss 00 04:31:17.01

A date is a moment in the past or the future. Internally, PSPP represents a date as the
number of seconds since the epoch, midnight, Oct. 14, 1582. The date formats translate
between human-readable dates and PSPP’s numeric representation of dates and times. PSPP
has several date formats:

Date Format Template Example

DATE dd-mmm-yyyy 01-0CT-1978

ADATE mm/dd/yyyy 10/01/1978

EDATE dd.mm.yyyy 01.10.1978

JDATE yyyyjij 1978274

SDATE yyyy/mm/dd 1978/10/01

QYR qQyyyy 3Q 1978

MOYR mmm yyyy OCT 1978

WKYR ww WK yyyy 40 WK 1978

DATETIME dd-mmm-yyyy HH:MM:SS.ss 01-0CT-1978 04:31:17.01

YMDHMS yyyy-mm-dd HH:MM:SS.ss 1978-01-0CT 04:31:17.01

The templates in the preceding tables describe how the time and date formats are input
and output:

dd Day of month, from 1 to 31. Always output as two digits.

mm

mmm Month. In output, mm is output as two digits, mmm as the first three letters of an
English month name (January, February, .. .). In input, both of these formats,
plus Roman numerals, are accepted.

VYYY Year. In output, DATETIME and YMDHMS always produce 4-digit years;
other formats can produce a 2- or 4-digit year. The century assumed for 2-digit
years depends on the EPOCH setting (see [SET EPOCH], page 269). In output,
a year outside the epoch causes the whole field to be filled with asterisks (‘*’).

33i Day of year (Julian day), from 1 to 366. This is exactly three digits giving the
count of days from the start of the year. January 1 is considered day 1.

q Quarter of year, from 1 to 4. Quarters start on January 1, April 1, July 1, and
October 1.

wW Week of year, from 1 to 53. Output as exactly two digits. January 1 is the first
day of week 1.

DD Count of days, which may be positive or negative. Output as at least two digits.

hh Count of hours, which may be positive or negative. Output as at least two

digits.

Chapter 6: The PSPP language 40

HH Hour of day, from 0 to 23. Output as exactly two digits.

MM In MTIME, count of minutes, which may be positive or negative. Output as at
least two digits.

In other formats, minute of hour, from 0 to 59. Output as exactly two digits.

SS.ss Seconds within minute, from 0 to 59. The integer part is output as exactly two
digits. On output, seconds and fractional seconds may or may not be included,
depending on field width and decimal places. On input, seconds and fractional
seconds are optional. The DECIMAL setting controls the character accepted
and displayed as the decimal point (see [SET DECIMALJ, page 269).

For output, the date and time formats use the delimiters indicated in the table. For
input, date components may be separated by spaces or by one of the characters ‘=’, */’, ¢.”,
or ‘,’, and time components may be separated by spaces or ‘:’. On input, the ‘Q’ separating
quarter from year and the ‘WK’ separating week from year may be uppercase or lowercase,
and the spaces around them are optional.

On input, all time and date formats accept any amount of leading and trailing white
space.

The maximum width for time and date formats is 40 columns. Minimum input and
output width for each of the time and date formats is shown below:

Format Min. Input Width Min. OQutput Width Option
DATE 8 9 4-digit year
ADATE 8 8 4-digit year
EDATE 8 8 4-digit year
JDATE 5 5 4-digit year
SDATE 8 8 4-digit year
QYR 4 6 4-digit year
MOYR 6 6 4-digit year
WKYR 6 8 4-digit year
DATETIME 17 17 seconds
YMDHMS 12 16 seconds
MTIME 4 5

TIME 5 5 seconds
DTIME 8 8 seconds

In the table, “Option” describes what increased output width enables:

4-digit year
A field 2 columns wider than the minimum includes a 4-digit year. (DATETIME
and YMDHMS formats always include a 4-digit year.)

seconds A field 3 columns wider than the minimum includes seconds as well as minutes.
A field 5 columns wider than minimum, or more, can also include a decimal
point and fractional seconds (but no more than allowed by the format’s decimal
places).

For the time and date formats, the default output format is the same as the input format,
except that PSPP increases the field width, if necessary, to the minimum allowed for output.

Chapter 6: The PSPP language 41

Time or dates narrower than the field width are right-justified within the field.

When a time or date exceeds the field width, characters are trimmed from the end until
it fits. This can occur in an unusual situation, e.g. with a year greater than 9999 (which
adds an extra digit), or for a negative value on MTIME, TIME, or DTIME (which adds a
leading minus sign).

The system-missing value is output as a period at the right end of the field.

6.7.4.6 Date Component Formats

The WKDAY and MONTH formats provide input and output for the names of weekdays
and months, respectively.

On output, these formats convert a number between 1 and 7, for WKDAY, or between 1
and 12, for MONTH, into the English name of a day or month, respectively. If the name is
longer than the field, it is trimmed to fit. If the name is shorter than the field, it is padded
on the right with spaces. Values outside the valid range, and the system-missing value, are
output as all spaces.

On input, English weekday or month names (in uppercase or lowercase) are converted
back to their corresponding numbers. Weekday and month names may be abbreviated to
their first 2 or 3 letters, respectively.

The field width may range from 2 to 40, for WKDAY, or from 3 to 40, for MONTH. No
decimal places are allowed.

The default output format is the same as the input format.

6.7.4.7 String Formats

The A and AHEX formats are the only ones that may be assigned to string variables.
Neither format allows any decimal places.

In A format, the entire field is treated as a string value. The field width may range from
1 to 32,767, the maximum string width. The default output format is the same as the input
format.

In AHEX format, the field is composed of characters in a string encoded as hex digit
pairs. On output, hex digits are output in uppercase; on input, uppercase and lowercase
are both accepted. The default output format is A format with half the input width.

6.7.5 Scratch Variables

Most of the time, variables don’t retain their values between cases. Instead, either they're
being read from a data file or the active dataset, in which case they assume the value read,
or, if created with COMPUTE or another transformation, they’re initialized to the system-
missing value or to blanks, depending on type.

However, sometimes it’s useful to have a variable that keeps its value between cases. You
can do this with LEAVE (see Section 11.21 [LEAVE], page 107), or you can use a scratch
variable. Scratch variables are variables whose names begin with an octothorpe (‘#’).

Scratch variables have the same properties as variables left with LEAVE: they retain their
values between cases, and for the first case they are initialized to 0 or blanks. They have
the additional property that they are deleted before the execution of any procedure. For
this reason, scratch variables can’t be used for analysis. To use a scratch variable in an

Chapter 6: The PSPP language 42

analysis, use COMPUTE (see Section 12.3 [COMPUTE], page 114) to copy its value into an
ordinary variable, then use that ordinary variable in the analysis.

6.8 Files Used by pspp

PSPP makes use of many files each time it runs. Some of these it reads, some it writes, some
it creates. Here is a table listing the most important of these files:

command file

syntax file These names (synonyms) refer to the file that contains instructions that tell
psPpP what to do. The syntax file’s name is specified on the PSPP command
line. Syntax files can also be read with INCLUDE (see Section 17.15 [INCLUDE],
page 265).

datafile Data files contain raw data in text or binary format. Data can also be embedded
in a syntax file with BEGIN DATA and END DATA.

listing file One or more output files are created by PSPP each time it is run. The output files
receive the tables and charts produced by statistical procedures. The output
files may be in any number of formats, depending on how PSPP is configured.

system file
System files are binary files that store a dictionary and a set of cases. GET and
SAVE read and write system files.

portable file
Portable files are files in a text-based format that store a dictionary and a set
of cases. IMPORT and EXPORT read and write portable files.

6.9 File Handles

A file handle is a reference to a data file, system file, or portable file. Most often, a file
handle is specified as the name of a file as a string, that is, enclosed within ‘>’ or ‘"’.

A file name string that begins or ends with ‘|’ is treated as the name of a command to pipe
data to or from. You can use this feature to read data over the network using a program such
as ‘curl’ (e.g. GET ’|curl -s -S http://example.com/mydata.sav’), to read compressed
data from a file using a program such as ‘zcat’ (e.g. GET ’ | zcat mydata.sav.gz’), and for
many other purposes.

PSPP also supports declaring named file handles with the FILE HANDLE command. This
command associates an identifier of your choice (the file handle’s name) with a file. Later,
the file handle name can be substituted for the name of the file. When PSPP syntax accesses
a file multiple times, declaring a named file handle simplifies updating the syntax later to
use a different file. Use of FILE HANDLE is also required to read data files in binary formats.
See Section 8.8 [FILE HANDLE], page 68, for more information.

In some circumstances, PSPP must distinguish whether a file handle refers to a system
file or a portable file. When this is necessary to read a file, e.g. as an input file for GET or
MATCH FILES, PSPP uses the file’s contents to decide. In the context of writing a file, e.g. as
an output file for SAVE or AGGREGATE, PSPP decides based on the file’s name: if it ends in
‘.por’ (with any capitalization), then PSPP writes a portable file; otherwise, PSPP writes a
system file.

Chapter 6: The PSPP language 43

INLINE is reserved as a file handle name. It refers to the “data file” embedded into the
syntax file between BEGIN DATA and END DATA. See Section 8.1 [BEGIN DATA], page 62,
for more information.

The file to which a file handle refers may be reassigned on a later FILE HANDLE command
if it is first closed using CLOSE FILE HANDLE. See Section 8.2 [CLOSE FILE HANDLE],
page 62, for more information.

6.10 Backus-Naur Form

The syntax of some parts of the PSPP language is presented in this manual using the
formalism known as Backus-Naur Form, or BNF. The following table describes BNF:

e Words in all-uppercase are PSPP keyword tokens. In BNF, these are often called ter-
minals. There are some special terminals, which are written in lowercase for clarity:

number A real number.
integer An integer number.
string A string.

var-name A single variable name.

=/, +, -, etc.
Operators and punctuators.

The end of the command. This is not necessarily an actual dot in the
syntax file (see Section 6.2 [Commands], page 26).

e Other words in all lowercase refer to BNF definitions, called productions. These pro-
ductions are also known as nonterminals. Some nonterminals are very common, so they
are defined here in English for clarity:

var-list A list of one or more variable names or the keyword ALL.

expression
An expression. See Chapter 7 [Expressions|, page 44, for details.

e ‘::=" means “is defined as”. The left side of ‘::=" gives the name of the nonterminal

being defined. The right side of ‘: :=" gives the definition of that nonterminal. If the
right side is empty, then one possible expansion of that nonterminal is nothing. A BNF
definition is called a production.

e So, the key difference between a terminal and a nonterminal is that a terminal cannot
be broken into smaller parts—in fact, every terminal is a single token (see Section 6.1
[Tokens], page 25). On the other hand, nonterminals are composed of a (possibly
empty) sequence of terminals and nonterminals. Thus, terminals indicate the deepest
level of syntax description. (In parsing theory, terminals are the leaves of the parse
tree; nonterminals form the branches.)

e The first nonterminal defined in a set of productions is called the start symbol. The
start symbol defines the entire syntax for that command.

44

7 Mathematical Expressions

Expressions share a common syntax each place they appear in PSPP commands. Expressions
are made up of operands, which can be numbers, strings, or variable names, separated by
operators. There are five types of operators: grouping, arithmetic, logical, relational, and
functions.

Every operator takes one or more operands as input and yields exactly one result as
output. Depending on the operator, operands accept strings or numbers as operands. With
few exceptions, operands may be full-fledged expressions in themselves.

7.1 Boolean Values

Some PSPP operators and expressions work with Boolean values, which represent true/false
conditions. Booleans have only three possible values: 0 (false), 1 (true), and system-missing
(unknown). System-missing is neither true nor false and indicates that the true value is
unknown.

Boolean-typed operands or function arguments must take on one of these three values.
Other values are considered false, but provoke a warning when the expression is evaluated.

Strings and Booleans are not compatible, and neither may be used in place of the other.

7.2 Missing Values in Expressions

Most numeric operators yield system-missing when given any system-missing operand. A
string operator given any system-missing operand typically results in the empty string.
Exceptions are listed under particular operator descriptions.

String user-missing values are not treated specially in expressions.

User-missing values for numeric variables are always transformed into the system-missing
value, except inside the arguments to the VALUE and SYSMIS functions.

The missing-value functions can be used to precisely control how missing values are
treated in expressions. See Section 7.7.4 [Missing Value Functions], page 47, for more
details.

7.3 Grouping Operators

Parentheses (‘()’) are the grouping operators. Surround an expression with parentheses to
force early evaluation.

Parentheses also surround the arguments to functions, but in that situation they act as
punctuators, not as operators.

7.4 Arithmetic Operators

The arithmetic operators take numeric operands and produce numeric results.

a+b Yields the sum of a and b.
a-b Subtracts b from a and yields the difference.
a*xb Yields the product of a and b. If either a or b is 0, then the result is 0, even if

the other operand is missing.

Chapter 7: Mathematical Expressions 45

a/b

a *kx b

- a

Divides a by b and yields the quotient. If a is 0, then the result is 0, even if b
is missing. If b is zero, the result is system-missing.

Yields the result of raising a to the power b. If a is negative and b is not an
integer, the result is system-missing. The result of 0**0 is system-missing as
well.

Reverses the sign of a.

7.5 Logical Operators

The logical operators take logical operands and produce logical results, meaning “true or
false.” Logical operators are not true Boolean operators because they may also result in a
system-missing value. See Section 7.1 [Boolean Values], page 44, for more information.

a AND b
a&b

aOR b
alb

NOT a

a

True if both a and b are true, false otherwise. If one operand is false, the result
is false even if the other is missing. If both operands are missing, the result is
missing.

True if at least one of a and b is true. If one operand is true, the result is true
even if the other operand is missing. If both operands are missing, the result is
missing.

True if a is false. If the operand is missing, then the result is missing.

7.6 Relational Operators

The relational operators take numeric or string operands and produce Boolean results.

Strings cannot be compared to numbers. When strings of different lengths are compared,
the shorter string is right-padded with spaces to match the length of the longer string.

The results of string comparisons, other than tests for equality or inequality, depend on
the character set in use. String comparisons are case-sensitive.

aEQ b
a=b>b
alLEb
a<=b

alLTb
a<b

aGE b
a>>=»b
aGT b
a>b
aNE b
a“=b
a<>b

True if a is equal to b.

True if a is less than or equal to b.

True if a is less than b.

True if a is greater than or equal to b.

True if a is greater than b.

True if a is not equal to b.

Chapter 7: Mathematical Expressions 46

7.7 Functions

PSPP functions provide mathematical abilities above and beyond those possible using simple
operators. Functions have a common syntax: each is composed of a function name followed
by a left parenthesis, one or more arguments, and a right parenthesis.

Function names are not reserved. Their names are specially treated only when followed
by a left parenthesis, so that ‘EXP(10)’ refers to the constant value e raised to the 10th
power, but ‘EXP’ by itself refers to the value of a variable called EXP.

The sections below describe each function in detail.

7.7.1 Mathematical Functions

Advanced mathematical functions take numeric arguments and produce numeric results.

EXP (exponent) [Function]
Returns e (approximately 2.71828) raised to power exponent.

LG10 (number) [Function]
Takes the base-10 logarithm of number. If number is not positive, the result is
system-missing.

LN (number) [Function]
Takes the base-e logarithm of number. If number is not positive, the result is system-
missing.

LNGAMMA (number) [Function]

Yields the base-e logarithm of the complete gamma of number. If number is a negative
integer, the result is system-missing.

SQRT (number) [Function]
Takes the square root of number. If number is negative, the result is system-missing.

7.7.2 Miscellaneous Mathematical Functions

Miscellaneous mathematical functions take numeric arguments and produce numeric results.

ABS (number) [Function]
Results in the absolute value of number.

MOD (numerator, denominator) [Function]
Returns the remainder (modulus) of numerator divided by denominator. If numerator
is 0, then the result is 0, even if denominator is missing. If denominator is 0, the
result is system-missing.

MOD10 (number) [Function]
Returns the remainder when number is divided by 10. If number is negative,
MOD10(number) is negative or zero.

RND (number [, mult[, fuzzbits]|) [Function]
Rounds number and rounds it to a multiple of mult (by default 1). Halves are rounded
away from zero, as are values that fall short of halves by less than fuzzbits of errors
in the least-significant bits of number. If fuzzbits is not specified then the default
is taken from SET FUZZBITS (see [SET FUZZBITS]|, page 271), which is 6 unless
overridden.

Chapter 7: Mathematical Expressions 47

TRUNC (number [, mult|, fuzzbits]|) [Function]
Rounds number to a multiple of mult, toward zero. For the default mult of 1, this
is equivalent to discarding the fractional part of number. Values that fall short of a
multiple of mult by less than fuzzbits of errors in the least-significant bits of number

are rounded away from zero. If fuzzbits is not specified then the default is taken from
SET FUZZBITS (see [SET FUZZBITS], page 271), which is 6 unless overridden.

7.7.3 Trigonometric Functions

Trigonometric functions take numeric arguments and produce numeric results.

ARCOS (number) [Function]

ACOS (number) [Function]
Takes the arccosine, in radians, of number. Results in system-missing if number is
not between -1 and 1 inclusive. This function is a PSPP extension.

ARSIN (number) [Function]

ASIN (number) [Function]
Takes the arcsine, in radians, of number. Results in system-missing if number is not
between -1 and 1 inclusive.

ARTAN (number) [Function]
ATAN (number) [Function]
Takes the arctangent, in radians, of number.

COS (angle) [Function]
Takes the cosine of angle which should be in radians.

SIN (angle) [Function]
Takes the sine of angle which should be in radians.

TAN (angle) [Function]
Takes the tangent of angle which should be in radians. Results in system-missing at
values of angle that are too close to odd multiples of /2. Portability: none.

7.7.4 Missing-Value Functions

Missing-value functions take various numeric arguments and yield various types of results.
Except where otherwise stated below, the normal rules of evaluation apply within expression
arguments to these functions. In particular, user-missing values for numeric variables are
converted to system-missing values.

MISSING (expr) [Function]
When expr is simply the name of a numeric variable, returns 1 if the variable has
the system-missing value or if it is user-missing. For any other value 0 is returned.
If expr takes another form, the function returns 1 if the value is system-missing, 0
otherwise.

NMISS (expr [, expr]...) [Function]
Each argument must be a numeric expression. Returns the number of system-missing
values in the list, which may include variable ranges using the varl TO var2 syntax.

Chapter 7: Mathematical Expressions 48

NVALID (expr [, expr]...) [Function]
Each argument must be a numeric expression. Returns the number of values in the
list that are not system-missing. The list may include variable ranges using the vari
TO var2 syntax.

SYSMIS (expr) [Function]
Returns 1 if expr has the system-missing value, 0 otherwise.

VALUE (variable) [Function]

VALUE (vector(index)) [Function]

Prevents the user-missing values of the variable or vector element from being trans-
formed into system-missing values, and always results in its actual value, whether it
is valid, user-missing, or system-missing.

7.7.5 Set-Membership Functions

Set membership functions determine whether a value is a member of a set. They take a set
of numeric arguments or a set of string arguments, and produce Boolean results.

String comparisons are performed according to the rules given in Section 7.6 [Relational
Operators]|, page 45. User-missing string values are treated as valid values.

ANY (value, set [, set]...) [Function]
Returns true if value is equal to any of the set values, and false otherwise. For numeric
arguments, returns system-missing if value is system-missing or if all the values in set
are system-missing. If value

RANGE (value, low, high [, 1ow, high]...) [Function]
Returns true if value is in any of the intervals bounded by low and high inclusive,
and false otherwise. low and high must be given in pairs. Returns system-missing
if any high is less than its low or, for numeric arguments, if value is system-missing
or if all the low-high pairs contain one (or two) system-missing values. A pair does
not match value if either low or high is missing, even if value equals the non-missing
endpoint.

7.7.6 Statistical Functions

Statistical functions compute descriptive statistics on a list of values. Some statistics can
be computed on numeric or string values; other can only be computed on numeric values.
Their results have the same type as their arguments. The current case’s weighting factor
(see Section 13.7 [WEIGHT], page 135) has no effect on statistical functions.

These functions’ argument lists may include entire ranges of variables using the var1 TO
var2 syntax.

Unlike most functions, statistical functions can return non-missing values even when
some of their arguments are missing. Most statistical functions, by default, require only 1
non-missing value to have a non-missing return, but CFVAR, SD, and VARIANCE require 2.
These defaults can be increased (but not decreased) by appending a dot and the minimum
number of valid arguments to the function name. For example, MEAN.3(X, Y, Z) would
only return non-missing if all of ‘X’, ‘Y’, and ‘Z’ were valid.

Chapter 7: Mathematical Expressions 49

CFVAR (number, number]|, . ..]) [Function]
Results in the coefficient of variation of the values of number. (The coefficient of
variation is the standard deviation divided by the mean.)

MAX (value, value], ...]) [Function]
Results in the value of the greatest value. The values may be numeric or string.

MEAN (number, number], . ..]) [Function]
Results in the mean of the values of number.

MEDIAN (number, number]|, . ..]) [Function]
Results in the median of the values of number. Given an even number of nonmissing
arguments, yields the mean of the two middle values.

MIN (number, number], .. .]) [Function]
Results in the value of the least value. The values may be numeric or string.

SD (number, number], . . .]) [Function]
Results in the standard deviation of the values of number.

SUM (number, number], . ..]) [Function]
Results in the sum of the values of number.

VARIANCE (number, number], .. .]) [Function]
Results in the variance of the values of number.

7.7.7 String Functions

String functions take various arguments and return various results.

CONCAT (string, string], ...]) [Function]
Returns a string consisting of each string in sequence. CONCAT("abc", "def",

"ghi") has a value of "abcdefghi". The resultant string is truncated to a maximum
of 32767 bytes.

INDEX (haystack, needle) [Function]

RINDEX (haystack, needle) [Function]
Returns a positive integer indicating the position of the first (for INDEX) or last (for
RINDEX) occurrence of needle in haystack. Returns 0 if haystack does not contain
needle. Returns 1 if needle is the empty string.

INDEX (haystack, needles, needle_len) [Function]

RINDEX (haystack, needle, needle_len) [Function]
Divides needles into multiple needles, each with length needle_len, which must be a
positive integer that evenly divides the length of needles. Searches haystack for the
occurrences of each needle and returns a positive integer indicating the byte index of
the beginning of the first (for INDEX) or last (for RINDEX) needle it finds. Returns 0
if haystack does not contain any of the needles, or if needles is the empty string.

LENGTH (string) [Function]
Returns the number of bytes in string.

Chapter 7: Mathematical Expressions 50

LOWER (string) [Function]
Returns a string identical to string except that all uppercase letters are changed
to lowercase letters. The definitions of “uppercase” and “lowercase” are system-

dependent.
LPAD (string, length[, padding]) [Function]
RPAD (string, length|, padding]) [Function]

If string is at least length bytes long, these functions return string unchanged. Oth-
erwise, they return string padded with padding on the left side (for LPAD) or right
side (for RPAD) to length bytes. These functions report an error and return string
unchanged if length is missing or bigger than 32767.

The padding argument must not be an empty string and defaults to a space if not
specified. If its length does not evenly fit the amount of space needed for padding,
the returned string will be shorter than length.

LTRIM (string|, padding]) [Function]

RTRIM (string[, padding]) [Function]
These functions return string, after removing leading (for LTRIM) or trailing (for
RTRIM) copies of padding. If padding is omitted, these functions remove spaces (but
not tabs or other white space). These functions return string unchanged if padding
is the empty string.

NUMBER (string, format) [Function]
Returns the number produced when string is interpreted according to format specifier
format. If the format width w is less than the length of string, then only the first
w bytes in string are used, e.g. NUMBER("123", F3.0) and NUMBER("1234", F3.0)
both have value 123. If w is greater than string’s length, then it is treated as if
it were right-padded with spaces. If string is not in the correct format for format,
system-missing is returned.

REPLACE (haystack, needle, replacement|, nl) [Function]
Returns string haystack with instances of needle replaced by replacement. If nonneg-
ative integer n is specified, it limits the maximum number of replacements; otherwise,
all instances of needle are replaced.

STRING (number, format) [Function]
Returns a string corresponding to number in the format given by format specifier
format. For example, STRING(123.56, F5.1) has the value "123.6".

STRUNC (string, n) [Function]
Returns string, first trimming it to at most n bytes, then removing trailing spaces
(but not tabs or other white space). Returns an empty string if n is zero or negative,
or string unchanged if n is missing.

SUBSTR (string, start) [Function]
Returns a string consisting of the value of string from position start onward. Returns
an empty string if start is system-missing, less than 1, or greater than the length of
string.

Chapter 7: Mathematical Expressions 51

SUBSTR (string, start, count) [Function]
Returns a string consisting of the first count bytes from string beginning at position
start. Returns an empty string if start or count is system-missing, if start is less
than 1 or greater than the number of bytes in string, or if count is less than 1.
Returns a string shorter than count bytes if start + count - 1 is greater than the
number of bytes in string. Examples: SUBSTR("abcdefg", 3, 2) has value "cd";
SUBSTR("nonsense", 4, 10) has the value "sense".

UPCASE (string) [Function]
Returns string, changing lowercase letters to uppercase letters.

7.7.8 Time & Date Functions

For compatibility, PSPP considers dates before 15 Oct 1582 invalid. Most time and date

functions will not accept earlier dates.

7.7.8.1 How times & dates are defined and represented

Times and dates are handled by PSPP as single numbers. A time is an interval. PSPP
measures times in seconds. Thus, the following intervals correspond with the numeric
values given:

10 minutes 600
1 hour 3,600
1 day, 3 hours, 10 seconds 97,210
40 days 3,456,000

A date, on the other hand, is a particular instant in the past or the future. PSPP
represents a date as a number of seconds since midnight preceding 14 Oct 1582. Because
midnight preceding the dates given below correspond with the numeric PSPP dates given:

15 Oct 1582 86,400
4 Jul 1776 6,113,318,400
1 Jan 1900 10,010,390,400
1 Oct 1978 12,495,427,200

24 Aug 1995 13,028,601,600

7.7.8.2 Functions that Produce Times

These functions take numeric arguments and return numeric values that represent times.

TIME.DAYS (ndays) [Function]
Returns a time corresponding to ndays days.

TIME.HMS (nhours, nmins, nsecs) [Function]
Returns a time corresponding to nhours hours, nmins minutes, and nsecs seconds.
The arguments may not have mixed signs: if any of them are positive, then none may
be negative, and vice versa.

7.7.8.3 Functions that Examine Times
These functions take numeric arguments in PSPP time format and give numeric results.

CTIME.DAYS (time) [Function]
Results in the number of days and fractional days in time.

Chapter 7: Mathematical Expressions 52

CTIME.HQOURS (time) [Function]
Results in the number of hours and fractional hours in time.

CTIME.MINUTES (time) [Function]
Results in the number of minutes and fractional minutes in time.

CTIME.SECONDS (time) [Function]
Results in the number of seconds and fractional seconds in time. (CTIME.SECONDS
does nothing; CTIME.SECONDS (x) is equivalent to x.)

7.7.8.4 Functions that Produce Dates

These functions take numeric arguments and give numeric results that represent dates.
Arguments taken by these functions are:

day Refers to a day of the month between 1 and 31. Day 0 is also accepted and
refers to the final day of the previous month. Days 29, 30, and 31 are accepted
even in months that have fewer days and refer to a day near the beginning of
the following month.

month Refers to a month of the year between 1 and 12. Months 0 and 13 are also
accepted and refer to the last month of the preceding year and the first month
of the following year, respectively.

quarter Refers to a quarter of the year between 1 and 4. The quarters of the year begin
on the first day of months 1, 4, 7, and 10.

week Refers to a week of the year between 1 and 53.
yday Refers to a day of the year between 1 and 366.
year Refers to a year, 1582 or greater. Years between 0 and 99 are treated according

to the epoch set on SET EPOCH, by default beginning 69 years before the
current date (see [SET EPOCH], page 269).

If these functions’ arguments are out-of-range, they are correctly normalized before con-
version to date format. Non-integers are rounded toward zero.

DATE.DMY (day, month, year) [Function]

DATE.MDY (month, day, year) [Function]
Results in a date value corresponding to the midnight before day day of month month
of year year.

DATE.MOYR (month, year) [Function]
Results in a date value corresponding to the midnight before the first day of month
month of year year.

DATE.QYR (quarter, year) [Function]
Results in a date value corresponding to the midnight before the first day of quarter
quarter of year year.

DATE.WKYR (week, year) [Function]
Results in a date value corresponding to the midnight before the first day of week
week of year year.

Chapter 7: Mathematical Expressions 53

DATE.YRDAY (year, yday) [Function]
Results in a date value corresponding to the day yday of year year.

7.7.8.5 Functions that Examine Dates

These functions take numeric arguments in PSPP date or time format and give numeric
results. These names are used for arguments:

date A numeric value in PSPP date format.
time A numeric value in PSPP time format.

time-or-date
A numeric value in PSPP time or date format.

XDATE.DATE (time-or-date) [Function]
For a time, results in the time corresponding to the number of whole days date-or-
time includes. For a date, results in the date corresponding to the latest midnight at
or before date-or-time; that is, gives the date that date-or-time is in.

XDATE.HOUR (time-or-date) [Function]
For a time, results in the number of whole hours beyond the number of whole days
represented by date-or-time. For a date, results in the hour (as an integer between 0
and 23) corresponding to date-or-time.

XDATE. JDAY (date) [Function]
Results in the day of the year (as an integer between 1 and 366) corresponding to
date.

XDATE.MDAY (date) [Function]
Results in the day of the month (as an integer between 1 and 31) corresponding to
date.

XDATE.MINUTE (time-or-date) [Function]

Results in the number of minutes (as an integer between 0 and 59) after the last hour
in time-or-date.

XDATE.MONTH (date) [Function]
Results in the month of the year (as an integer between 1 and 12) corresponding to
date.

XDATE.QUARTER (date) [Function]
Results in the quarter of the year (as an integer between 1 and 4) corresponding to
date.

XDATE.SECOND (time-or-date) [Function]

Results in the number of whole seconds after the last whole minute (as an integer
between 0 and 59) in time-or-date.

XDATE.TDAY (date) [Function]
Results in the number of whole days from 14 Oct 1582 to date.

Chapter 7: Mathematical Expressions 54

XDATE.TIME (date) [Function]
Results in the time of day at the instant corresponding to date, as a time value. This
is the number of seconds since midnight on the day corresponding to date.

XDATE.WEEK (date) [Function]
Results in the week of the year (as an integer between 1 and 53) corresponding to
date.

XDATE.WKDAY (date) [Function]

Results in the day of week (as an integer between 1 and 7) corresponding to date,
where 1 represents Sunday.

XDATE.YEAR (date) [Function]
Returns the year (as an integer 1582 or greater) corresponding to date.

7.7.8.6 Time and Date Arithmetic

Ordinary arithmetic operations on dates and times often produce sensible results. Adding
a time to, or subtracting one from, a date produces a new date that much earlier or later.
The difference of two dates yields the time between those dates. Adding two times produces
the combined time. Multiplying a time by a scalar produces a time that many times longer.
Since times and dates are just numbers, the ordinary addition and subtraction operators
are employed for these purposes.

Adding two dates does not produce a useful result.

Dates and times may have very large values. Thus, it is not a good idea to take powers
of these values; also, the accuracy of some procedures may be affected. If necessary, convert
times or dates in seconds to some other unit, like days or years, before performing analysis.

pPSpPP supplies a few functions for date arithmetic:

DATEDIFF (date2, datel, unit) [Function]

Returns the span of time from datel to date2 in terms of unit, which must be a quoted
string, one of ‘years’, ‘quarters’, ‘months’, ‘weeks’, ‘days’, ‘hours’, ‘minutes’, and
‘seconds’. The result is an integer, truncated toward zero.
One year is considered to span from a given date to the same month, day, and time of
day the next year. Thus, from Jan. 1 of one year to Jan. 1 the next year is considered
to be a full year, but Feb. 29 of a leap year to the following Feb. 28 is not. Similarly,
one month spans from a given day of the month to the same day of the following
month. Thus, there is never a full month from Jan. 31 of a given year to any day in
the following February.

DATESUM (date, quantity, unit|, method)) [Function]
Returns date advanced by the given quantity of the specified unit, which must be
one of the strings ‘years’, ‘quarters’, ‘months’, ‘weeks’, ‘days’, ‘hours’, ‘minutes’,
and ‘seconds’.

When unit is ‘years’, ‘quarters’, or ‘months’, only the integer part of quantity is
considered. Adding one of these units can cause the day of the month to exceed
the number of days in the month. In this case, the method comes into play: if it is
omitted or specified as ‘closest’ (as a quoted string), then the resulting day is the

Chapter 7: Mathematical Expressions 55

last day of the month; otherwise, if it is specified as ‘rollover’, then the extra days
roll over into the following month.

When unit is ‘weeks’, ‘days’, ‘hours’, ‘minutes’, or ‘seconds’, the quantity is not
rounded to an integer and method, if specified, is ignored.

7.7.9 Miscellaneous Functions

LAG (variablel, n|) [Function]
variable must be a numeric or string variable name. LAG yields the value of that
variable for the case n before the current one. Results in system-missing (for numeric
variables) or blanks (for string variables) for the first n cases.

LAG obtains values from the cases that become the new active dataset after a procedure
executes. Thus, LAG will not return values from cases dropped by transformations
such as SELECT IF, and transformations like COMPUTE that modify data will change
the values returned by LAG. These are both the case whether these transformations
precede or follow the use of LAG.

If LAG is used before TEMPORARY, then the values it returns are those in cases just
before TEMPORARY. LAG may not be used after TEMPORARY.

If omitted, ncases defaults to 1. Otherwise, ncases must be a small positive constant
integer. There is no explicit limit, but use of a large value will increase memory
consumption.

YRMODA (year, month, day) [Function]
year is a year, either between 0 and 99 or at least 1582. Unlike other PSPP date
functions, years between 0 and 99 always correspond to 1900 through 1999. month
is a month between 1 and 13. day is a day between 0 and 31. A day of 0 refers to
the last day of the previous month, and a month of 13 refers to the first month of the
next year. year must be in range. year, month, and day must all be integers.

YRMODA results in the number of days between 15 Oct 1582 and the date specified,
plus one. The date passed to YRMODA must be on or after 15 Oct 1582. 15 Oct 1582
has a value of 1.

VALUELABEL (variable) [Function]
Returns a string matching the label associated with the current value of variable. If
the current value of variable has no associated label, then this function returns the
empty string. variable may be a numeric or string variable.

7.7.10 Statistical Distribution Functions

PSPP can calculate several functions of standard statistical distributions. These functions
are named systematically based on the function and the distribution. The table below
describes the statistical distribution functions in general:

PDF.dist (x[, param. . .])
Probability density function for dist. The domain of x depends on dist. For
continuous distributions, the result is the density of the probability function at
x, and the range is nonnegative real numbers. For discrete distributions, the
result is the probability of x.

Chapter 7: Mathematical Expressions 56

CDF.dist (x[, param. . .])
Cumulative distribution function for dist, that is, the probability that a random
variate drawn from the distribution is less than x. The domain of x depends
dist. The result is a probability.

SIG.dist (x[, param. . .)
Tail probability function for dist, that is, the probability that a random variate
drawn from the distribution is greater than x. The domain of x depends dist.
The result is a probability. Only a few distributions include an SIG function.

IDF.dist (p[, param. . .])
Inverse distribution function for dist, the value of x for which the CDF would
yield p. The value of p is a probability. The range depends on dist and is
identical to the domain for the corresponding CDF.

RV.dist ([param. . .])
Random variate function for dist. The range depends on the distribution.

NPDF.dist (x|, param. . .])
Noncentral probability density function. The result is the density of the given
noncentral distribution at x. The domain of x depends on dist. The range is
nonnegative real numbers. Only a few distributions include an NPDF function.

NCDF.dist (x[, param. . .])
Noncentral cumulative distribution function for dist, that is, the probability
that a random variate drawn from the given noncentral distribution is less than
x. The domain of x depends dist. The result is a probability. Only a few
distributions include an NCDF function.

The individual distributions are described individually below.

7.7.10.1 Continuous Distributions

The following continuous distributions are available:

PDF.BETA (x) [Function]
CDF.BETA (x, a, b) [Function]
IDF.BETA (p, a, b) [Function]
RV.BETA (a, b) [Function]
NPDF .BETA (x, a, b, 1ambda) [Function]
NCDF.BETA (x, a, b, 1ambda) [Function]

Beta distribution with shape parameters a and b. The noncentral distribution takes

an additional parameter lambda. Constraints: a > 0, b > 0, lambda >= 0, 0 <= x <=

1,0 <=p<=1.
PDF.BVNOR (x0, x1, rho) [Function]
CDF.BVNOR (x0, x1, rho) [Function]

Bivariate normal distribution of two standard normal variables with correlation coef-
ficient rho. Two variates x0 and xI must be provided. Constraints: 0 <= rho <=1,
0<=p<=1

Chapter 7: Mathematical Expressions 57

PDF.CAUCHY (x, a, b) [Function]
CDF.CAUCHY (x, a, b) [Function]
IDF.CAUCHY (p, a, b) [Function]
RV.CAUCHY (a, b) [Function]

Cauchy distribution with location parameter a and scale parameter b. Constraints:
b>0,0<p<1.

CDF.CHISQ (x, df) [Function]
SIG.CHISQ (x, df) [Function]
IDF.CHISQ (p, df) [Function]
RV.CHISQ (df) [Function]
NCDF.CHISQ (x, df, 1ambda) [Function]

Chi-squared distribution with df degrees of freedom. The noncentral distribution
takes an additional parameter lambda. Constraints: df > 0, lambda > 0, x >= 0, 0

<=p<1.
PDF.EXP (x, a) [Function]
CDF.EXP (x, a) [Function]
IDF.EXP (p, a) [Function]
RV.EXP (a) [Function]

Exponential distribution with scale parameter a. The inverse of a represents the rate
of decay. Constraints: a > 0, x >= 0,0 <= p < 1.

PDF.XPOWER (x, a, b) [Function]

RV.XPOWER (a, b) [Function]
Exponential power distribution with positive scale parameter a and nonnegative power
parameter b. Constraints: a > 0, b >= 0, x >= 0, 0 <= p <= 1. This distribution is
a PSPP extension.

PDF.F (x, df1, df2) [Function]
CDF.F (x, df1, df2) [Function]
SIG.F (x, df1, df2) [Function]
IDF.F (p, df1, df2) [Function]
RV.F (df1, df2) [Function]

F-distribution of two chi-squared deviates with dfl and df2 degrees of freedom. The
noncentral distribution takes an additional parameter lambda. Constraints: dfl > 0,
df2 > 0, lambda >= 0, x >=0,0<=p < 1.

PDF.GAMMA (x, a, b) [Function]
CDF.GAMMA (x, a, b) [Function]
IDF.GAMMA (p, a, b) [Function]
RV.GAMMA (a, b) [Function]

Gamma, distribution with shape parameter a and scale parameter b. Constraints: a
>0,b>0,x>=0,0<=p<1.

PDF.LANDAU (x) [Function]
RV.LANDAU () [Function]
Landau distribution.

Chapter 7: Mathematical Expressions 58

PDF.LAPLACE (x, a, b) [Function]
CDF.LAPLACE (x, a, b) [Function]
IDF.LAPLACE (p, a, b) [Function]
RV.LAPLACE (a, b) [Function]

Laplace distribution with location parameter a and scale parameter b. Constraints:
b>0,0<p<1.

RV.LEVY (c, alpha) [Function]
Levy symmetric alpha-stable distribution with scale ¢ and exponent alpha. Con-
straints: 0 < alpha <= 2.

RV.LVSKEW (c, alpha, beta) [Function]
Levy skew alpha-stable distribution with scale ¢, exponent alpha, and skewness pa-
rameter beta. Constraints: 0 < alpha <= 2, -1 <= beta <= 1.

PDF.LOGISTIC (x, a, b) [Function]
CDF.LOGISTIC (x, a, b) [Function]
IDF.LOGISTIC (p, a, b) [Function]
RV.LOGISTIC (a, b) [Function]

Logistic distribution with location parameter a and scale parameter b. Constraints:
b>0,0<p<1.

PDF.LNORMAL (x, a, b) [Function]
CDF.LNORMAL (x, a, b) [Function]
IDF.LNORMAL (p, a, b) [Function]
RV.LNORMAL (a, b) [Function]
Lognormal distribution with parameters a and b. Constraints: a > 0, b > 0, x >= 0,
0<=p<1.
PDF.NORMAL (x, mu, sigma) [Function]
CDF .NORMAL (x, mu, sigma) [Function]
IDF.NORMAL (p, mu, sigma) [Function]
RV.NORMAL (mu, sigma) [Function]

Normal distribution with mean mu and standard deviation sigma. Constraints: b >
0, 0 < p < 1. Three additional functions are available as shorthand:

CDFNORM (x) [Function]
Equivalent to CDF.NORMAL(x, 0, 1).

PROBIT (p) [Function]
Equivalent to IDF.NORMAL(p, 0, 1).

NORMAL (sigma) [Function]
Equivalent to RV.NORMAL(0, sigma).

PDF.NTAIL (x, a, sigma) [Function]

RV.NTAIL (a, sigma) [Function]

Normal tail distribution with lower limit a and standard deviation sigma. This dis-
tribution is a PSPP extension. Constraints: a > 0, x > a, 0 < p < 1.

Chapter 7: Mathematical Expressions 59

PDF.PARETO (x, a, b) [Function]
CDF.PARETO (x, a, b) [Function]
IDF.PARETO (p, a, b) [Function]
RV.PARETO (a, b) [Function]

Pareto distribution with threshold parameter a and shape parameter b. Constraints:
a>0,b>0,x>=a,0<=p<1.

PDF.RAYLEIGH (x, sigma) [Function]
CDF.RAYLEIGH (x, sigma) [Function]
IDF.RAYLEIGH (p, sigma) [Function|
RV.RAYLEIGH (sigma) [Function]

Rayleigh distribution with scale parameter sigma. This distribution is a PSPP exten-
sion. Constraints: sigma > 0, x > 0.

PDF.RTAIL (x, a, sigma) [Function]

RV.RTAIL (a, sigma) [Function]
Rayleigh tail distribution with lower limit a and scale parameter sigma. This distri-
bution is a PSPP extension. Constraints: a > 0, sigma > 0, x > a.

PDF.T (x, df) [Function]
CDF.T (x, df) [Function]
IDF.T (p, df) [Function]
RV.T (df) [Function]

T-distribution with df degrees of freedom. The noncentral distribution takes an
additional parameter lambda. Constraints: df >0, 0 < p < 1.

PDF.T1G (x, a, b) [Function]
CDF.T1G (x, a, b) [Function]
IDF.T1G (p, a, b) [Function]

Type-1 Gumbel distribution with parameters a and b. This distribution is a PSPP
extension. Constraints: 0 < p < 1.

PDF.T2G (x, a, b) [Function]
CDF.T2G (x, a, b) [Function]
IDF.T2G (p, a, b) [Function]

Type-2 Gumbel distribution with parameters a and b. This distribution is a PSPP
extension. Constraints: x > 0,0 < p < 1.

PDF.UNIFORM (x, a, b) [Function]
CDF.UNIFORM (x, a, b) [Function]
IDF.UNIFORM (p, a, b) [Function]
RV.UNIFORM (a, b) [Function]

Uniform distribution with parameters a and b. Constraints: a <= x <= b, 0 <= p
<= 1. An additional function is available as shorthand:

UNIFORM (b) [Function]
Equivalent to RV.UNIFORM(0, b).

PDF.WEIBULL (x, a, b) [Function]
CDF.WEIBULL (x, a, b) [Function]

Chapter 7: Mathematical Expressions 60

IDF.WEIBULL (p, a, b) [Function]

RV.WEIBULL (a, b) [Function]
Weibull distribution with parameters a and b. Constraints: a > 0, b > 0, x >= 0, 0
<=p<1l

7.7.10.2 Discrete Distributions

The following discrete distributions are available:

PDF.BERNOULLI (x) [Function]

CDF .BERNOULLI (x, p) [Function]

RV.BERNOULLI (p) [Function]
Bernoulli distribution with probability of success p. Constraints: x =0 or 1,0 <= p
<=1.

PDF.BINOM (x, n, p) [Function]

CDF.BINOM (x, n, p) [Function]

RV.BINOM (n, p) [Function]

Binomial distribution with n trials and probability of success p. Constraints: integer
n>0,0 <= p <=1, integer x <= n.

PDF.GEOM (x, n, p) [Function]
CDF.GEOM (x, n, p) [Function]
RV.GEOM (n, p) [Function]

Geometric distribution with probability of success p. Constraints: 0 <= p <= 1,
integer x > 0.

PDF.HYPER (x, a, b, ¢) [Function]
CDF.HYPER (x, a, b, c) [Function]
RV.HYPER (a, b, ¢) [Function]

Hypergeometric distribution when b objects out of a are drawn and ¢ of the available
objects are distinctive. Constraints: integer a > 0, integer b <= a, integer ¢ <= a,
integer x >= 0.

PDF.L0OG (x, p) [Function]

RV.LOG (p) [Function]
Logarithmic distribution with probability parameter p. Constraints: 0 <= p < 1, x
>=1.

PDF.NEGBIN (x, n, p) [Function]

CDF .NEGBIN (x, n, p) [Function]

RV.NEGBIN (n, p) [Function]

Negative binomial distribution with number of successes parameter n and probability
of success parameter p. Constraints: integer n >= 0, 0 < p <= 1, integer x >= 1.

PDF.POISSON (x, mu) [Function]
CDF.POISSON (x, mu) [Function]
RV.POISSON (mu) [Function]

Poisson distribution with mean mu. Constraints: mu > 0, integer x >= 0.

Chapter 7: Mathematical Expressions 61

7.8 Operator Precedence

The following table describes operator precedence. Smaller-numbered levels in the table
have higher precedence. Within a level, operations are always performed from left to right.
The first occurrence of ‘-’ represents unary negation, the second binary subtraction.

1. O
*%

* /

+ -
=>=><=<<>
NOT

AND

OR

© XN N

62

8 Data Input and Output

Data are the focus of the PSPP language. Each datum belongs to a case (also called an
observation). Each case represents an individual or “experimental unit”. For example, in
the results of a survey, the names of the respondents, their sex, age, etc. and their responses
are all data and the data pertaining to single respondent is a case. This chapter examines the
PSPP commands for defining variables and reading and writing data. There are alternative
commands to read data from predefined sources such as system files or databases (See
Section 9.3 [GET], page 80.)

Note: These commands tell PSPP how to read data, but the data will not
actually be read until a procedure is executed.

8.1 BEGIN DATA
BEGIN DATA.

END DATA.

BEGIN DATA and END DATA can be used to embed raw ASCII data in a PSPP syntax file.
DATA LIST or another input procedure must be used before BEGIN DATA (see Section 8.5
[DATA LIST], page 64). BEGIN DATA and END DATA must be used together. END DATA must
appear by itself on a single line, with no leading white space and exactly one space between
the words END and DATA, like this:

END DATA.

8.2 CLOSE FILE HANDLE

CLOSE FILE HANDLE handle_name.

CLOSE FILE HANDLE disassociates the name of a file handle with a given file. The only
specification is the name of the handle to close. Afterward FILE HANDLE.

The file named INLINE, which represents data entered between BEGIN DATA and END
DATA, cannot be closed. Attempts to close it with CLOSE FILE HANDLE have no effect.

CLOSE FILE HANDLE is a PSPP extension.

8.3 DATAFILE ATTRIBUTE

DATAFILE ATTRIBUTE
ATTRIBUTE=name(’value’) [name(’value’)]. . .
ATTRIBUTE=name|index|(’value’) [name[index](’value’)]. . .
DELETE=name [name]. . .
DELETE=name[index| [name[index]]. . .

DATAFILE ATTRIBUTE adds, modifies, or removes user-defined attributes associated with
the active dataset. Custom data file attributes are not interpreted by PSPP, but they are
saved as part of system files and may be used by other software that reads them.

Use the ATTRIBUTE subcommand to add or modify a custom data file attribute. Specify
the name of the attribute as an identifier (see Section 6.1 [Tokens], page 25), followed by
the desired value, in parentheses, as a quoted string. Attribute names that begin with $

Chapter 8: Data Input and Output 63

are reserved for PSPP’s internal use, and attribute names that begin with @ or $@ are not
displayed by most PSPP commands that display other attributes. Other attribute names
are not treated specially.

Attributes may also be organized into arrays. To assign to an array element, add an
integer array index enclosed in square brackets ([and]) between the attribute name and
value. Array indexes start at 1, not 0. An attribute array that has a single element (number
1) is not distinguished from a non-array attribute.

Use the DELETE subcommand to delete an attribute. Specify an attribute name by itself
to delete an entire attribute, including all array elements for attribute arrays. Specify an
attribute name followed by an array index in square brackets to delete a single element of an
attribute array. In the latter case, all the array elements numbered higher than the deleted
element are shifted down, filling the vacated position.

To associate custom attributes with particular variables, instead of with the entire active
dataset, use VARIABLE ATTRIBUTE (see Section 11.14 [VARIABLE ATTRIBUTE], page 103)
instead.

DATAFILE ATTRIBUTE takes effect immediately. It is not affected by conditional and
looping structures such as DO IF or LOOP.

8.4 DATASET commands

DATASET NAME name [WINDOW={ASIS,FRONT}].

DATASET ACTIVATE name [WINDOW={ASIS,FRONT}].

DATASET COPY name [WINDOW={MINIMIZED ,HIDDEN,FRONT}|.
DATASET DECLARE name [WINDOW={MINIMIZED,HIDDEN,FRONT}|.
DATASET CLOSE {name,*,ALL}.

DATASET DISPLAY.

The DATASET commands simplify use of multiple datasets within a PSPP session. They
allow datasets to be created and destroyed. At any given time, most PSPP commands work
with a single dataset, called the active dataset.

The DATASET NAME command gives the active dataset the specified name, or if it
already had a name, it renames it. If another dataset already had the given name, that
dataset is deleted.

The DATASET ACTIVATE command selects the named dataset, which must already
exist, as the active dataset. Before switching the active dataset, any pending transforma-
tions are executed, as if EXECUTE had been specified. If the active dataset is unnamed before
switching, then it is deleted and becomes unavailable after switching.

The DATASET COPY command creates a new dataset with the specified name, whose
contents are a copy of the active dataset. Any pending transformations are executed, as
if EXECUTE had been specified, before making the copy. If a dataset with the given name
already exists, it is replaced. If the name is the name of the active dataset, then the active
dataset becomes unnamed.

The DATASET DECLARE command creates a new dataset that is initially “empty,”
that is, it has no dictionary or data. If a dataset with the given name already exists, this has

no effect. The new dataset can be used with commands that support output to a dataset,
e.g. AGGREGATE (see Section 12.1 [AGGREGATE], page 108).

Chapter 8: Data Input and Output 64

The DATASET CLOSE command deletes a dataset. If the active dataset is specified by
name, or if ‘*’ is specified, then the active dataset becomes unnamed. If a different dataset
is specified by name, then it is deleted and becomes unavailable. Specifying ALL deletes all
datasets except for the active dataset, which becomes unnamed.

The DATASET DISPLAY command lists all the currently defined datasets.

Many DATASET commands accept an optional WINDOW subcommand. In the PsPPIRE
GUI, the value given for this subcommand influences how the dataset’s window is displayed.
Outside the GUI, the WINDOW subcommand has no effect. The valid values are:

ASIS Do not change how the window is displayed. This is the default for DATASET
NAME and DATASET ACTIVATE.

FRONT Raise the dataset’s window to the top. Make it the default dataset for running
syntax.

MINIMIZED
Display the window “minimized” to an icon. Prefer other datasets for running
syntax. This is the default for DATASET COPY and DATASET DECLARE.

HIDDEN Hide the dataset’s window. Prefer other datasets for running syntax.

8.5 DATA LIST

Used to read text or binary data, DATA LIST is the most fundamental data-reading com-
mand. Even the more sophisticated input methods use DATA LIST commands as a building
block. Understanding DATA LIST is important to understanding how to use PSPP to read
your data files.

There are two major variants of DATA LIST, which are fixed format and free format. In
addition, free format has a minor variant, list format, which is discussed in terms of its
differences from vanilla free format.

Each form of DATA LIST is described in detail below.

See Section 9.4 [GET DATA], page 81, for a command that offers a few enhancements
over DATA LIST and that may be substituted for DATA LIST in many situations.

8.5.1 DATA LIST FIXED

DATA LIST [FIXED)]
{TABLE,NOTABLE}
[FILE="file_name’ [ENCODING="encoding’]|
[RECORDS=record_count]
[END=end_var|
[SKIP=record_count]
/[line_no| var_spec. . .

where each var_spec takes one of the forms
var_list start-end [type_spec]
var_list (fortran_spec)
DATA LIST FIXED is used to read data files that have values at fixed positions on each
line of single-line or multiline records. The keyword FIXED is optional.

Chapter 8: Data Input and Output 65

The FILE subcommand must be used if input is to be taken from an external file. It may
be used to specify a file name as a string or a file handle (see Section 6.9 [File Handles],
page 42). If the FILE subcommand is not used, then input is assumed to be specified
within the command file using BEGIN DATA. . .END DATA (see Section 8.1 [BEGIN DATA],
page 62). The ENCODING subcommand may only be used if the FILE subcommand is also
used. It specifies the character encoding of the file. See Section 17.16 [INSERT], page 265,
for information on supported encodings.

The optional RECORDS subcommand, which takes a single integer as an argument, is used
to specify the number of lines per record. If RECORDS is not specified, then the number of
lines per record is calculated from the list of variable specifications later in DATA LIST.

The END subcommand is only useful in conjunction with INPUT PROGRAM. See Section 8.9
[INPUT PROGRAM], page 71, for details.

The optional SKIP subcommand specifies a number of records to skip at the beginning
of an input file. It can be used to skip over a row that contains variable names, for example.

DATA LIST can optionally output a table describing how the data file is read. The TABLE
subcommand enables this output, and NOTABLE disables it. The default is to output the
table.

The list of variables to be read from the data list must come last. Each line in the
data record is introduced by a slash (‘/’). Optionally, a line number may follow the slash.
Following, any number of variable specifications may be present.

Each variable specification consists of a list of variable names followed by a description
of their location on the input line. Sets of variables may be specified using the DATA LIST
TO convention (see Section 6.7.3 [Sets of Variables|, page 32). There are two ways to specify
the location of the variable on the line: columnar style and FORTRAN style.

In columnar style, the starting column and ending column for the field are specified after
the variable name, separated by a dash (‘-’). For instance, the third through fifth columns
on a line would be specified ‘3-5’. By default, variables are considered to be in ‘F’ format
(see Section 6.7.4 [Input and Output Formats|, page 32). (This default can be changed; see
Section 17.20 [SET], page 267, for more information.)

In columnar style, to use a variable format other than the default, specify the format
type in parentheses after the column numbers. For instance, for alphanumeric ‘A’ format,
use ‘(4)’.

In addition, implied decimal places can be specified in parentheses after the column
numbers. As an example, suppose that a data file has a field in which the characters ‘1234’
should be interpreted as having the value 12.34. Then this field has two implied decimal
places, and the corresponding specification would be ‘(2)’. If a field that has implied
decimal places contains a decimal point, then the implied decimal places are not applied.

Changing the variable format and adding implied decimal places can be done together;
for instance, ‘(N,5)’.

When using columnar style, the input and output width of each variable is computed
from the field width. The field width must be evenly divisible into the number of variables
specified.

FORTRAN style is an altogether different approach to specifying field locations. With
this approach, a list of variable input format specifications, separated by commas, are

Chapter 8: Data Input and Output 66

placed after the variable names inside parentheses. Each format specifier advances as many
characters into the input line as it uses.

Implied decimal places also exist in FORTRAN style. A format specification with d
decimal places also has d implied decimal places.

In addition to the standard format specifiers (see Section 6.7.4 [Input and Output For-
mats], page 32), FORTRAN style defines some extensions:

X Advance the current column on this line by one character position.

Tx Set the current column on this line to column x, with column numbers consid-
ered to begin with 1 at the left margin.

NEWRECx Skip forward x lines in the current record, resetting the active column to the
left margin.

Repeat count
Any format specifier may be preceded by a number. This causes the action of
that format specifier to be repeated the specified number of times.

(specl, ..., specN)
Group the given specifiers together. This is most useful when preceded by a
repeat count. Groups may be nested arbitrarily.

FORTRAN and columnar styles may be freely intermixed. Columnar style leaves the
active column immediately after the ending column specified. Record motion using NEWREC
in FORTRAN style also applies to later FORTRAN and columnar specifiers.

Examples
1.
DATA LIST TABLE /NAME 1-10 (A) INFO1 TO INFO3 12-17 (1).

BEGIN DATA.

John Smith 102311
Bob Arnold 122015
Bill Yates 918 6
END DATA.

Defines the following variables:
e NAME, a 10-character-wide string variable, in columns 1 through 10.
e INFO1, a numeric variable, in columns 12 through 13.
e INF02, a numeric variable, in columns 14 through 15.

e INF03, a numeric variable, in columns 16 through 17.

The BEGIN DATA/END DATA commands cause three cases to be defined:

Case NAME INFO1 INFO2 INFO03
1 John Smith 10 23 11
2 Bob Arnold 12 20 15
3 Bill Yates 9 18 6

The TABLE keyword causes PSPP to print out a table describing the four variables
defined.

Chapter 8: Data Input and Output 67

DAT LIS FIL="survey.dat"
/ID 1-5 NAME 7-36 (A) SURNAME 38-67 (A) MINITIAL 69 (A)
/Q01 TO Q50 7-56
/.
Defines the following variables:

e ID, a numeric variable, in columns 1-5 of the first record.

e NAME, a 30-character string variable, in columns 7-36 of the first record.

e SURNAME, a 30-character string variable, in columns 38-67 of the first record.

e MINITIAL, a l-character string variable, in column 69 of the first record.

e Fifty variables QO01, Q02, QO03, . .., Q49, Q50, all numeric, Q01 in column 7, Q02 in
column 8§, ..., Q49 in column 55, Q50 in column 56, all in the second record.

Cases are separated by a blank record.
Data is read from file survey.dat in the current directory.

This example shows keywords abbreviated to their first 3 letters.

8.5.2 DATA LIST FREE

DATA LIST FREE
((TABC}, ...
[{NOTABLE,TABLE}]
[FILE="file_name’ [ENCODING="encoding’]]
[SKIP=n_records]
/var_spec. . .

where each var_spec takes one of the forms
var_list [(type_spec)]
var_list *

In free format, the input data is, by default, structured as a series of fields separated
by spaces, tabs, or line breaks. If the current DECIMAL separator is DOT (see Section 17.20
[SET], page 267), then commas are also treated as field separators. Each field’s content
may be unquoted, or it may be quoted with a pairs of apostrophes (‘’’) or double quotes
(‘). Unquoted white space separates fields but is not part of any field. Any mix of spaces,
tabs, and line breaks is equivalent to a single space for the purpose of separating fields, but
consecutive commas will skip a field.

Alternatively, delimiters can be specified explicitly, as a parenthesized, comma-separated
list of single-character strings immediately following FREE. The word TAB may also be
used to specify a tab character as a delimiter. When delimiters are specified explicitly, only
the given characters, plus line breaks, separate fields. Furthermore, leading spaces at the
beginnings of fields are not trimmed, consecutive delimiters define empty fields, and no form
of quoting is allowed.

The NOTABLE and TABLE subcommands are as in DATA LIST FIXED above. NOTABLE is
the default.

The FILE, SKIP, and ENCODING subcommands are as in DATA LIST FIXED above.

Chapter 8: Data Input and Output 68

The variables to be parsed are given as a single list of variable names. This list must
be introduced by a single slash (‘/’). The set of variable names may contain format spec-
ifications in parentheses (see Section 6.7.4 [Input and Output Formats|, page 32). Format
specifications apply to all variables back to the previous parenthesized format specification.

In addition, an asterisk may be used to indicate that all variables preceding it are to
have input/output format ‘F8.0’.

Specified field widths are ignored on input, although all normal limits on field width
apply, but they are honored on output.

8.5.3 DATA LIST LIST

DATA LIST LIST
[(({TAB,c’}, ...)]
[{NOTABLE, TABLE}]
[FILE="file_name’ [ENCODING="encoding’]|
[SKIP=record_count]
/var_spec. . .

where each var_spec takes one of the forms
var_list [(type_spec)]
var_list *

With one exception, DATA LIST LIST is syntactically and semantically equivalent to DATA
LIST FREE. The exception is that each input line is expected to correspond to exactly one
input record. If more or fewer fields are found on an input line than expected, an appropriate
diagnostic is issued.

8.6 END CASE

END CASE.

END CASE is used only within INPUT PROGRAM to output the current case. See Section 8.9
[INPUT PROGRAM], page 71, for details.

8.7 END FILE

END FILE.

END FILE is used only within INPUT PROGRAM to terminate the current input program.
See Section 8.9 INPUT PROGRAM], page 71.

8.8 FILE HANDLE

For text files:

FILE HANDLE handle_name
/NAME="file_name
[/MODE=CHARACTER]
[/ENDS={CR,CRLF}]
JTABWIDTH=tab_width
[ENCODING="encoding’]

Chapter 8: Data Input and Output 69

For binary files in native encoding with fixed-length records:
FILE HANDLE handle_name
/NAME="file_name’
/MODE=IMAGE
[/LRECL=rec_len]
[ENCODING="encoding’]

For binary files in native encoding with variable-length records:
FILE HANDLE handle_name
/NAME="file_name’
/MODE=BINARY
[/LRECL=rec_len]
[ENCODING="encoding’]

For binary files encoded in EBCDIC:
FILE HANDLE handle_name
/NAME="file_name’
/MODE=360
/RECFORM={FIXED,VARIABLE,SPANNED}
[/LRECL=rec_len]
[ENCODING="encoding’]

Use FILE HANDLE to associate a file handle name with a file and its attributes, so that
later commands can refer to the file by its handle name. Names of text files can be specified
directly on commands that access files, so that FILE HANDLE is only needed when a file is not
an ordinary file containing lines of text. However, FILE HANDLE may be used even for text

files, and it may be easier to specify a file’s name once and later refer to it by an abstract
handle.

Specify the file handle name as the identifier immediately following the FILE HANDLE
command name. The identifier INLINE is reserved for representing data embedded in the
syntax file (see Section 8.1 [BEGIN DATA], page 62) The file handle name must not already
have been used in a previous invocation of FILE HANDLE, unless it has been closed by an
intervening command (see Section 8.2 [CLOSE FILE HANDLE], page 62).

The effect and syntax of FILE HANDLE depends on the selected MODE:

e In CHARACTER mode, the default, the data file is read as a text file. Each text line
is read as one record.

In CHARACTER mode only, tabs are expanded to spaces by input programs, except
by DATA LIST FREE with explicitly specified delimiters. Each tab is 4 characters wide
by default, but TABWIDTH (a PSPP extension) may be used to specify an alternate
width. Use a TABWIDTH of 0 to suppress tab expansion.

A file written in CHARACTER mode by default uses the line ends of the system on
which PSPP is running, that is, on Windows, the default is CR LF line ends, and on
other systems the default is LF only. Specify ENDS as CR or CRLF to override the

default. PSPP reads files using either convention on any kind of system, regardless of
ENDS.

Chapter 8: Data Input and Output 70

e In IMAGE mode, the data file is treated as a series of fixed-length binary records.
LRECL should be used to specify the record length in bytes, with a default of 1024.
On input, it is an error if an IMAGE file’s length is not a integer multiple of the record
length. On output, each record is padded with spaces or truncated, if necessary, to
make it exactly the correct length.

e In BINARY mode, the data file is treated as a series of variable-length binary records.
LRECL may be specified, but its value is ignored. The data for each record is both
preceded and followed by a 32-bit signed integer in little-endian byte order that specifies
the length of the record. (This redundancy permits records in these files to be efficiently
read in reverse order, although PSPP always reads them in forward order.) The length
does not include either integer.

e Mode 360 reads and writes files in formats first used for tapes in the 1960s on IBM
mainframe operating systems and still supported today by the modern successors of
those operating systems. For more information, see OS/400 Tape and Diskette Device
Programming, available on IBM’s website.

Alphanumeric data in mode 360 files are encoded in EBCDIC. psSPP translates
EBCDIC to or from the host’s native format as necessary on input or output, using
an ASCII/EBCDIC translation that is one-to-one, so that a “round trip” from ASCII
to EBCDIC back to ASCII, or vice versa, always yields exactly the original data.

The RECFORM subcommand is required in mode 360. The precise file format depends
on its setting:

F

FIXED This record format is equivalent to IMAGE mode, except for EBCDIC
translation.
IBM documentation calls this *F (fixed-length, deblocked) format.

v

VARIABLE

The file comprises a sequence of zero or more variable-length blocks. Each
block begins with a 4-byte block descriptor word (BDW). The first two
bytes of the BDW are an unsigned integer in big-endian byte order that
specifies the length of the block, including the BDW itself. The other two
bytes of the BDW are ignored on input and written as zeros on output.

Following the BDW, the remainder of each block is a sequence of one or
more variable-length records, each of which in turn begins with a 4-byte
record descriptor word (RDW) that has the same format as the BDW.
Following the RDW, the remainder of each record is the record data.

The maximum length of a record in VARIABLE mode is 65,527 bytes:
65,535 bytes (the maximum value of a 16-bit unsigned integer), minus 4
bytes for the BDW, minus 4 bytes for the RDW.

In mode VARIABLE, LRECL specifies a maximum, not a fixed, record
length, in bytes. The default is 8,192.

IBM documentation calls this *VB (variable-length, blocked, unspanned)
format.

Chapter 8: Data Input and Output 71

VS

SPANNED
The file format is like that of VARIABLE mode, except that logical records
may be split among multiple physical records (called segments) or blocks.
In SPANNED mode, the third byte of each RDW is called the segment con-
trol character (SCC). Odd SCC values cause the segment to be appended
to a record buffer maintained in memory; even values also append the
segment and then flush its contents to the input procedure. Canonically,
SCC value 0 designates a record not spanned among multiple segments,
and values 1 through 3 designate the first segment, the last segment, or
an intermediate segment, respectively, within a multi-segment record. The
record buffer is also flushed at end of file regardless of the final record’s
SCC.

The maximum length of a logical record in VARIABLE mode is limited
only by memory available to PSPP. Segments are limited to 65,527 bytes,
as in VARIABLE mode.

This format is similar to what IBM documentation call *VS (variable-
length, deblocked, spanned) format.

In mode 360, fields of type A that extend beyond the end of a record read from disk
are padded with spaces in the host’s native character set, which are then translated
from EBCDIC to the native character set. Thus, when the host’s native character set
is based on ASCII, these fields are effectively padded with character X>80°. This wart
is implemented for compatibility.

The NAME subcommand specifies the name of the file associated with the handle. It is
required in all modes but SCRATCH mode, in which its use is forbidden.

The ENCODING subcommand specifies the encoding of text in the file. For reading text
files in CHARACTER mode, all of the forms described for ENCODING on the INSERT
command are supported (see Section 17.16 [INSERT], page 265). For reading in other file-
based modes, encoding autodetection is not supported; if the specified encoding requests
autodetection then the default encoding is used. This is also true when a file handle is used
for writing a file in any mode.

8.9 INPUT PROGRAM
INPUT PROGRAM.

. input commands . ..

END INPUT PROGRAM.

INPUT PROGRAM. . .END INPUT PROGRAM specifies a complex input program. By placing
data input commands within INPUT PROGRAM, PSPP programs can take advantage of more
complex file structures than available with only DATA LIST.

The first sort of extended input program is to simply put multiple DATA LIST commands
within the INPUT PROGRAM. This will cause all of the data files to be read in parallel. Input
will stop when end of file is reached on any of the data files.

Chapter 8: Data Input and Output 72

Transformations, such as conditional and looping constructs, can also be included within
INPUT PROGRAM. These can be used to combine input from several data files in more complex
ways. However, input will still stop when end of file is reached on any of the data files.

To prevent INPUT PROGRAM from terminating at the first end of file, use the END subcom-
mand on DATA LIST. This subcommand takes a variable name, which should be a numeric
scratch variable (see Section 6.7.5 [Scratch Variables|, page 41). (It need not be a scratch
variable but otherwise the results can be surprising.) The value of this variable is set to 0
when reading the data file, or 1 when end of file is encountered.

Two additional commands are useful in conjunction with INPUT PROGRAM. END CASE is
the first. Normally each loop through the INPUT PROGRAM structure produces one case. END
CASE controls exactly when cases are output. When END CASE is used, looping from the end
of INPUT PROGRAM to the beginning does not cause a case to be output.

END FILE is the second. When the END subcommand is used on DATA LIST, there is no
way for the INPUT PROGRAM construct to stop looping, so an infinite loop results. END FILE,
when executed, stops the flow of input data and passes out of the INPUT PROGRAM structure.

INPUT PROGRAM must contain at least one DATA LIST or END FILE command.

Example 1: Read two files in parallel to the end of the shorter

The following example reads variable X from file a.txt and variable Y from file b.txt. If
one file is shorter than the other then the extra data in the longer file is ignored.

INPUT PROGRAM.
DATA LIST NOTABLE FILE=’a.txt’/X 1-10.
DATA LIST NOTABLE FILE=’b.txt’/Y 1-10.
END INPUT PROGRAM.
LIST.

Example 2: Read two files in parallel, supplementing the shorter

The following example also reads variable X from a.txt and variable Y from b.txt. If
one file is shorter than the other then it continues reading the longer to its end, setting the
other variable to system-missing.

INPUT PROGRAM.
NUMERIC #A #B.

DO IF NOT #A.
DATA LIST NOTABLE END=#A FILE=’a.txt’/X 1-10.
END IF.
DO IF NOT #B.
DATA LIST NOTABLE END=#B FILE=’b.txt’/Y 1-10.
END IF.
DO IF #A AND #B.
END FILE.
END IF.
END CASE.

END INPUT PROGRAM.
LIST.

Chapter 8: Data Input and Output 73

Example 3: Concatenate two files (version 1)

The following example reads data from file a.txt, then from b.txt, and concatenates them
into a single active dataset.

INPUT PROGRAM.
NUMERIC #A #B.

DO IF #A.
DATA LIST NOTABLE END=#B FILE=’b.txt’/X 1-10.
DO IF #B.
END FILE.
ELSE.
END CASE.
END IF.
ELSE.
DATA LIST NOTABLE END=#A FILE=’a.txt’/X 1-10.
DO IF NOT #A.
END CASE.
END IF.
END IF.
END INPUT PROGRAM.
LIST.

Example 4: Concatenate two files (version 2)

This is another way to do the same thing as Example 3.

INPUT PROGRAM.
NUMERIC #EOF.

LOOP IF NOT #EOF.
DATA LIST NOTABLE END=#EQOF FILE=’a.txt’/X 1-10.
DO IF NOT #EOQOF.
END CASE.
END IF.
END LOOP.

COMPUTE #EOF = 0.
LOOP IF NOT #EQOF.
DATA LIST NOTABLE END=#EOF FILE="b.txt’/X 1-10.
DO IF NOT #EOQOF.
END CASE.
END IF.
END LOOP.

END FILE.
END INPUT PROGRAM.
LIST.

Chapter 8: Data Input and Output 74

Example 5: Generate random variates

The follows example creates a dataset that consists of 50 random variates between 0 and
10.
INPUT PROGRAM.
LOOP #I=1 TO 50.
COMPUTE X=UNIFORM(10).
END CASE.
END LOOP.
END FILE.
END INPUT PROGRAM.
LIST /FORMAT=NUMBERED.

8.10 LIST

LIST
/VARIABLES=var_list
/CASES=FROM start_index TO end_index BY incr_index
/FORMAT={UNNUMBERED ,NUMBERED} {WRAP,SINGLE}

The LIST procedure prints the values of specified variables to the listing file.
The VARIABLES subcommand specifies the variables whose values are to be printed.

Keyword VARIABLES is optional. If VARIABLES subcommand is not specified then all
variables in the active dataset are printed.

The CASES subcommand can be used to specify a subset of cases to be printed. Specify
FROM and the case number of the first case to print, TO and the case number of the last case
to print, and BY and the number of cases to advance between printing cases, or any subset
of those settings. If CASES is not specified then all cases are printed.

The FORMAT subcommand can be used to change the output format. NUMBERED will print
case numbers along with each case; UNNUMBERED, the default, causes the case numbers to
be omitted. The WRAP and SINGLE settings are currently not used.

Case numbers start from 1. They are counted after all transformations have been con-
sidered.

LIST is a procedure. It causes the data to be read.

8.11 NEW FILE
NEW FILE.

NEW FILE command clears the dictionary and data from the current active dataset.

8.12 PRINT

PRINT
[OUTFILE="file_name’]
[RECORDS=n_lines|
[{NOTABLE, TABLE}]
[ENCODING="encoding’]
[/[line_no] arg. . .]

Chapter 8: Data Input and Output 75

arg takes one of the following forms:
'string’ [start]
var_list start-end [type_spec]
var_list (fortran_spec)
var_list *

The PRINT transformation writes variable data to the listing file or an output file. PRINT
is executed when a procedure causes the data to be read. Follow PRINT by EXECUTE to print
variable data without invoking a procedure (see Section 17.11 [EXECUTE], page 264).

All PRINT subcommands are optional. If no strings or variables are specified, PRINT
outputs a single blank line.

The OUTFILE subcommand specifies the file to receive the output. The file may be a file
name as a string or a file handle (see Section 6.9 [File Handles|, page 42). If OUTFILE is
not present then output is sent to PSPP’s output listing file. When OUTFILE is present, the
output is written to file_name in a plain text format, with a space inserted at beginning of
each output line, even lines that otherwise would be blank.

The ENCODING subcommand may only be used if the OUTFILE subcommand is also used.
It specifies the character encoding of the file. See Section 17.16 [INSERT], page 265, for
information on supported encodings.

The RECORDS subcommand specifies the number of lines to be output. The number of
lines may optionally be surrounded by parentheses.

TABLE will cause the PRINT command to output a table to the listing file that describes
what it will print to the output file. NOTABLE, the default, suppresses this output table.

Introduce the strings and variables to be printed with a slash (‘/?). Optionally, the slash
may be followed by a number indicating which output line is specified. In the absence of
this line number, the next line number is specified. Multiple lines may be specified using
multiple slashes with the intended output for a line following its respective slash.

Literal strings may be printed. Specify the string itself. Optionally the string may be
followed by a column number, specifying the column on the line where the string should
start. Otherwise, the string is printed at the current position on the line.

Variables to be printed can be specified in the same ways as available for DATA LIST
FIXED (see Section 8.5.1 [DATA LIST FIXED], page 64). In addition, a variable list may be
followed by an asterisk (‘*’), which indicates that the variables should be printed in their
dictionary print formats, separated by spaces. A variable list followed by a slash or the end
of command is interpreted in the same way.

If a FORTRAN type specification is used to move backwards on the current line, then
text is written at that point on the line, the line is truncated to that length, although
additional text being added will again extend the line to that length.

8.13 PRINT EJECT

PRINT EJECT
OUTFILE="file_name’
RECORDS=n_lines
{NOTABLE,TABLE}

Chapter 8: Data Input and Output 76

/[line_no| arg. ..

arg takes one of the following forms:
'string’ [start-end]
var_list start-end [type_spec]
var_list (fortran_spec)
var_list *
PRINT EJECT advances to the beginning of a new output page in the listing file or output
file. It can also output data in the same way as PRINT.

All PRINT EJECT subcommands are optional.
Without OUTFILE, PRINT EJECT ejects the current page in the listing file, then it produces
other output, if any is specified.

With OUTFILE, PRINT EJECT writes its output to the specified file. The first line of
output is written with ‘1’ inserted in the first column. Commonly, this is the only line of
output. If additional lines of output are specified, these additional lines are written with a
space inserted in the first column, as with PRINT.

See Section 8.12 [PRINT], page 74, for more information on syntax and usage.

8.14 PRINT SPACE

PRINT SPACE [OUTFILE="file_name’] [ENCODING="encoding’] [n_lines].
PRINT SPACE prints one or more blank lines to an output file.

The OUTFILE subcommand is optional. It may be used to direct output to a file specified
by file name as a string or file handle (see Section 6.9 [File Handles], page 42). If OUTFILE
is not specified then output is directed to the listing file.

The ENCODING subcommand may only be used if OUTFILE is also used. It specifies the
character encoding of the file. See Section 17.16 [INSERT], page 265, for information on
supported encodings.

n_lines is also optional. If present, it is an expression (see Chapter 7 [Expressions],
page 44) specifying the number of blank lines to be printed. The expression must evaluate
to a nonnegative value.

8.15 REREAD
REREAD [FILE=handle] [COLUMN=column| [ENCODING='encoding’].

The REREAD transformation allows the previous input line in a data file already processed
by DATA LIST or another input command to be re-read for further processing.

The FILE subcommand, which is optional, is used to specify the file to have its line re-
read. The file must be specified as the name of a file handle (see Section 6.9 [File Handles],
page 42). If FILE is not specified then the last file specified on DATA LIST is assumed (last
file specified lexically, not in terms of flow-of-control).

By default, the line re-read is re-read in its entirety. With the COLUMN subcommand, a
prefix of the line can be exempted from re-reading. Specify an expression (see Chapter 7
[Expressions], page 44) evaluating to the first column that should be included in the re-read
line. Columns are numbered from 1 at the left margin.

Chapter 8: Data Input and Output 77

The ENCODING subcommand may only be used if the FILE subcommand is also used.
It specifies the character encoding of the file. See Section 17.16 [INSERT], page 265, for
information on supported encodings.

Issuing REREAD multiple times will not back up in the data file. Instead, it will re-read
the same line multiple times.

8.16 REPEATING DATA

REPEATING DATA
/STARTS=start-end
/OCCURS=n_occurs
JFILE="file_name’
JLENGTH=length
/CONTINUED [=cont_start-cont_end)]
/ID=id_start-id_end=id_var
/{TABLE,NOTABLE}
/DATA=var_spec. . .

where each var_spec takes one of the forms
var_list start-end [type_spec]
var_list (fortran_spec)

REPEATING DATA parses groups of data repeating in a uniform format, possibly with sev-
eral groups on a single line. Each group of data corresponds with one case. REPEATING
DATA may only be used within an INPUT PROGRAM structure (see Section 8.9 [INPUT PRO-
GRAM], page 71). When used with DATA LIST, it can be used to parse groups of cases that
share a subset of variables but differ in their other data.

The STARTS subcommand is required. Specify a range of columns, using literal numbers
or numeric variable names. This range specifies the columns on the first line that are used
to contain groups of data. The ending column is optional. If it is not specified, then the
record width of the input file is used. For the inline file (see Section 8.1 [BEGIN DATA],
page 62) this is 80 columns; for a file with fixed record widths it is the record width; for
other files it is 1024 characters by default.

The OCCURS subcommand is required. It must be a number or the name of a numeric
variable. Its value is the number of groups present in the current record.

The DATA subcommand is required. It must be the last subcommand specified. It is used
to specify the data present within each repeating group. Column numbers are specified
relative to the beginning of a group at column 1. Data is specified in the same way as with
DATA LIST FIXED (see Section 8.5.1 [DATA LIST FIXED], page 64).

All other subcommands are optional.

FILE specifies the file to read, either a file name as a string or a file handle (see Section 6.9
[File Handles|, page 42). If FILE is not present then the default is the last file handle used
on DATA LIST (lexically, not in terms of flow of control).

By default REPEATING DATA will output a table describing how it will parse the input

data. Specifying NOTABLE will disable this behavior; specifying TABLE will explicitly enable
it.

Chapter 8: Data Input and Output 78

The LENGTH subcommand specifies the length in characters of each group. If it is not
present then length is inferred from the DATA subcommand. LENGTH can be a number or
a variable name.

Normally all the data groups are expected to be present on a single line. Use the
CONTINUED command to indicate that data can be continued onto additional lines. If data
on continuation lines starts at the left margin and continues through the entire field width,
no column specifications are necessary on CONTINUED. Otherwise, specify the possible range
of columns in the same way as on STARTS.

When data groups are continued from line to line, it is easy for cases to get out of sync
through careless hand editing. The ID subcommand allows a case identifier to be present
on each line of repeating data groups. REPEATING DATA will check for the same identifier
on each line and report mismatches. Specify the range of columns that the identifier will
occupy, followed by an equals sign (‘=") and the identifier variable name. The variable must
already have been declared with NUMERIC or another command.

REPEATING DATA should be the last command given within an INPUT PROGRAM. It should
not be enclosed within a LOOP structure (see Section 14.5 [LOOP], page 150). Use DATA
LIST before, not after, REPEATING DATA.

8.17 WRITE

WRITE
OUTFILE="file_name’
RECORDS=n_lines
{NOTABLE,TABLE}
/[line_no] arg. . .

arg takes one of the following forms:
'string’ [start-end)]
var_list start-end [type_spec]
var_list (fortran_spec)
var_list *

WRITE writes text or binary data to an output file.

See Section 8.12 [PRINT], page 74, for more information on syntax and usage. PRINT
and WRITE differ in only a few ways:

e WRITE uses write formats by default, whereas PRINT uses print formats.

e PRINT inserts a space between variables unless a format is explicitly specified, but WRITE
never inserts space between variables in output.

e PRINT inserts a space at the beginning of each line that it writes to an output file (and
PRINT EJECT inserts ‘1’ at the beginning of each line that should begin a new page),
but WRITE does not.

e PRINT outputs the system-missing value according to its specified output format,

whereas WRITE outputs the system-missing value as a field filled with spaces. Binary
formats are an exception.

79

9 System and Portable File I/0

The commands in this chapter read, write, and examine system files and portable files.

9.1 APPLY DICTIONARY
APPLY DICTIONARY FROM={"file_name’ file_handle}.

APPLY DICTIONARY applies the variable labels, value labels, and missing values taken
from a file to corresponding variables in the active dataset. In some cases it also updates
the weighting variable.

The FROM clause is mandatory. Use it to specify a system file or portable file’s name in
single quotes, a data set name (see Section 6.7 [Datasets|, page 29), or a file handle name
(see Section 6.9 [File Handles|, page 42). The dictionary in the file is be read, but it does
not replace the active dataset’s dictionary. The file’s data is not read.

Only variables with names that exist in both the active dataset and the system file
are considered. Variables with the same name but different types (numeric, string) cause
an error message. Otherwise, the system file variables’ attributes replace those in their
matching active dataset variables:

e If a system file variable has a variable label, then it replaces the variable label of the
active dataset variable. If the system file variable does not have a variable label, then
the active dataset variable’s variable label, if any, is retained.

o If the system file variable has custom attributes (see Section 11.14 [VARIABLE AT-
TRIBUTE], page 103), then those attributes replace the active dataset variable’s cus-
tom attributes. If the system file variable does not have custom attributes, then the
active dataset variable’s custom attributes, if any, is retained.

e If the active dataset variable is numeric or short string, then value labels and missing
values, if any, are copied to the active dataset variable. If the system file variable does
not have value labels or missing values, then those in the active dataset variable, if any,
are not disturbed.

In addition to properties of variables, some properties of the active file dictionary as a
whole are updated:

e If the system file has custom attributes (see Section 8.3 [DATAFILE ATTRIBUTE],
page 62), then those attributes replace the active dataset variable’s custom attributes.

e If the active dataset has a weighting variable (see Section 13.7 [WEIGHT], page 135),
and the system file does not, or if the weighting variable in the system file does not
exist in the active dataset, then the active dataset weighting variable, if any, is re-
tained. Otherwise, the weighting variable in the system file becomes the active dataset
weighting variable.

APPLY DICTIONARY takes effect immediately. It does not read the active dataset. The
system file is not modified.

Chapter 9: System and Portable File I/O 80

9.2 EXPORT

EXPORT
/OUTFILE="file_name’
J/UNSELECTED={RETAIN,DELETE}
/DIGITS=n
/DROP=var_list
JKEEP=var_list
/RENAME=(src_.names=target_names). . .
JTYPE={COMM,TAPE}
/MAP

The EXPORT procedure writes the active dataset’s dictionary and data to a specified
portable file.

By default, cases excluded with FILTER are written to the file. These can be excluded
by specifying DELETE on the UNSELECTED subcommand. Specifying RETAIN makes the
default explicit.

Portable files express real numbers in base 30. Integers are always expressed to the
maximum precision needed to make them exact. Non-integers are, by default, expressed
to the machine’s maximum natural precision (approximately 15 decimal digits on many
machines). If many numbers require this many digits, the portable file may significantly
increase in size. As an alternative, the DIGITS subcommand may be used to specify the
number of decimal digits of precision to write. DIGITS applies only to non-integers.

The QUTFILE subcommand, which is the only required subcommand, specifies the
portable file to be written as a file name string or a file handle (see Section 6.9 [File
Handles|, page 42).

DROP, KEEP, and RENAME follow the same format as the SAVE procedure (see Section 9.6
[SAVE], page 87).

The TYPE subcommand specifies the character set for use in the portable file. Its value
is currently not used.

The MAP subcommand is currently ignored.

EXPORT is a procedure. It causes the active dataset to be read.

9.3 GET

GET
JFILE={"file_name’ file_handle}
/DROP=var_list
JKEEP=var_list
/RENAME=(src_names=target_names). . .
JENCODING="encoding’

GET clears the current dictionary and active dataset and replaces them with the dictio-
nary and data from a specified file.

The FILE subcommand is the only required subcommand. Specify the SPSS system file,
SPSS/PC+ system file, or SPSS portable file to be read as a string file name or a file handle
(see Section 6.9 [File Handles]|, page 42).

Chapter 9: System and Portable File I/O 81

By default, all the variables in a file are read. The DROP subcommand can be used to
specify a list of variables that are not to be read. By contrast, the KEEP subcommand can
be used to specify variable that are to be read, with all other variables not read.

Normally variables in a file retain the names that they were saved under. Use the RENAME
subcommand to change these names. Specify, within parentheses, a list of variable names
followed by an equals sign (‘=") and the names that they should be renamed to. Multiple
parenthesized groups of variable names can be included on a single RENAME subcommand.
Variables’ names may be swapped using a RENAME subcommand of the form /RENAME=(4
B=B A).

Alternate syntax for the RENAME subcommand allows the parentheses to be eliminated.
When this is done, only a single variable may be renamed at once. For instance,
/RENAME=A=B. This alternate syntax is deprecated.

DROP, KEEP, and RENAME are executed in left-to-right order. Each may be present any
number of times. GET never modifies a file on disk. Only the active dataset read from the
file is affected by these subcommands.

PSPP automatically detects the encoding of string data in the file, when possible.
The character encoding of old SPSS system files cannot always be guessed correctly,
and SPSS/PC+ system files do not include any indication of their encoding. Specify
the ENCODING subcommand with an TANA character set name as its string argument to
override the default. Use SYSFILE INFO to analyze the encodings that might be valid for a
system file. The ENCODING subcommand is a PSPP extension.

GET does not cause the data to be read, only the dictionary. The data is read later, when
a procedure is executed.

Use of GET to read a portable file is a PSPP extension.

9.4 GET DATA

GET DATA
/TYPE={GNM,ODS,PSQL,TXT}
.. .additional subcommands depending on TYPE. ..

The GET DATA command is used to read files and other data sources created by other
applications. When this command is executed, the current dictionary and active dataset
are replaced with variables and data read from the specified source.

The TYPE subcommand is mandatory and must be the first subcommand specified. It
determines the type of the file or source to read. PSPP currently supports the following file
types:

GNM Spreadsheet files created by Gnumeric (http://gnumeric.org).

ODS Spreadsheet files in OpenDocument format (http://opendocumentformat.
org).

PSQL Relations from PostgreSQL databases (http://postgresql.org).

TXT Textual data files in columnar and delimited formats.

Each supported file type has additional subcommands, explained in separate sections
below.

http://gnumeric.org
http://opendocumentformat.org
http://opendocumentformat.org
http://postgresql.org

Chapter 9: System and Portable File I/O 82

9.4.1 Spreadsheet Files

GET DATA /TYPE={GNM, ODS}
JFILE={"file_name’}
/SHEET={NAME ’sheet_name’, INDEX n}
/CELLRANGE={RANGE ’'range’, FULL}
/READNAMES={ON, OFF}
/ASSUMEDSTRWIDTH=n.

Gnumeric spreadsheets (http://gnumeric.org), and spreadsheets in OpenDocument
format (http://libreplanet.org/wiki/Group:OpenDocument/Software) can be read us-
ing the GET DATA command. Use the TYPE subcommand to indicate the file’s format.
/TYPE=GNM indicates Gnumeric files, /TYPE=O0DS indicates OpenDocument. The
FILE subcommand is mandatory. Use it to specify the name file to be read. All other
subcommands are optional.

The format of each variable is determined by the format of the spreadsheet cell containing
the first datum for the variable. If this cell is of string (text) format, then the width of the
variable is determined from the length of the string it contains, unless the ASSUMEDSTRWIDTH
subcommand is given.

The SHEET subcommand specifies the sheet within the spreadsheet file to read. There
are two forms of the SHEET subcommand. In the first form, /SHEET=name sheet_name, the
string sheet_name is the name of the sheet to read. In the second form, /SHEET=index idx,
idx is a integer which is the index of the sheet to read. The first sheet has the index 1. If
the SHEET subcommand is omitted, then the command reads the first sheet in the file.

The CELLRANGE subcommand specifies the range of cells within the sheet to read. If
the subcommand is given as /CELLRANGE=FULL, then the entire sheet is read. To read only
part of a sheet, use the form /CELLRANGE=range ’top_left_cell:bottom_right_cell’.
For example, the subcommand /CELLRANGE=range ’C3:P19’ reads columns C-P, and rows
3-19 inclusive. If no CELLRANGE subcommand is given, then the entire sheet is read.

If /READNAMES=0N is specified, then the contents of cells of the first row are used as the
names of the variables in which to store the data from subsequent rows. This is the default.
If /READNAMES=0FF is used, then the variables receive automatically assigned names.

The ASSUMEDSTRWIDTH subcommand specifies the maximum width of string variables
read from the file. If omitted, the default value is determined from the length of the string
in the first spreadsheet cell for each variable.

9.4.2 Postgres Database Queries

GET DATA /TYPE=PSQL
/CONNECT={connection info}
/SQL={query}
[/ASSUMEDSTRWIDTH=w]
[/UNENCRYPTED)]
|/BSIZE=1].

The PSQL type is used to import data from a postgres database server. The server may
be located locally or remotely. Variables are automatically created based on the table col-
umn names or the names specified in the SQL query. Postgres data types of high precision,
loose precision when imported into PSPP. Not all the postgres data types are able to be

http://gnumeric.org
http://libreplanet.org/wiki/Group:OpenDocument/Software

Chapter 9: System and Portable File I/0O 83

represented in PSPP. If a datum cannot be represented then GET DATA issues a warning and
that datum is set to SYSMIS.

The CONNECT subcommand is mandatory. It is a string specifying the parameters of
the database server from which the data should be fetched. The format of the string
is given in the postgres manual http://www.postgresql.org/docs/8.0/static/libpq.
html#LIBPQ-CONNECT.

The SQL subcommand is mandatory. It must be a valid SQL string to retrieve data from
the database.

The ASSUMEDSTRWIDTH subcommand specifies the maximum width of string variables
read from the database. If omitted, the default value is determined from the length of the
string in the first value read for each variable.

The UNENCRYPTED subcommand allows data to be retrieved over an insecure connection.
If the connection is not encrypted, and the UNENCRYPTED subcommand is not given, then
an error occurs. Whether or not the connection is encrypted depends upon the underlying
psql library and the capabilities of the database server.

The BSIZE subcommand serves only to optimise the speed of data transfer. It specifies
an upper limit on number of cases to fetch from the database at once. The default value
is 4096. If your SQL statement fetches a large number of cases but only a small number of
variables, then the data transfer may be faster if you increase this value. Conversely, if the
number of variables is large, or if the machine on which PSPP is running has only a small
amount of memory, then a smaller value is probably better.

The following syntax is an example:

GET DATA /TYPE=PSQL
/CONNECT="host=example.com port=5432 dbname=product user=fred passwd=xxxx’
/SQL="select * from manufacturer’.

9.4.3 Textual Data Files

GET DATA /TYPE=TXT
JFILE={"file_name’ file_handle}
[ENCODING="encoding’]
[/ARRANGEMENT={DELIMITED,FIXED}]
[/FIRSTCASE={first_case}|
[/IMPORTCASES=..]
.. .additional subcommands depending on ARRANGEMENT. ..

When TYPE=TXT is specified, GET DATA reads data in a delimited or fixed columnar
format, much like DATA LIST (see Section 8.5 [DATA LIST], page 64).

The FILE subcommand is mandatory. Specify the file to be read as a string file name or
(for textual data only) a file handle (see Section 6.9 [File Handles], page 42).

The ENCODING subcommand specifies the character encoding of the file to be read. See
Section 17.16 [INSERT], page 265, for information on supported encodings.

The ARRANGEMENT subcommand determines the file’s basic format. DELIMITED, the
default setting, specifies that fields in the input data are separated by spaces, tabs, or other
user-specified delimiters. FIXED specifies that fields in the input data appear at particular
fixed column positions within records of a case.

http://www.postgresql.org/docs/8.0/static/libpq.html#LIBPQ-CONNECT
http://www.postgresql.org/docs/8.0/static/libpq.html#LIBPQ-CONNECT

Chapter 9: System and Portable File I/O 84

By default, cases are read from the input file starting from the first line. To skip lines
at the beginning of an input file, set FIRSTCASE to the number of the first line to read: 2
to skip the first line, 3 to skip the first two lines, and so on.

IMPORTCASES is ignored, for compatibility. Use N OF CASES to limit the number of cases
read from a file (see Section 13.2 [N OF CASES], page 129), or SAMPLE to obtain a random
sample of cases (see Section 13.3 [SAMPLE], page 130).

The remaining subcommands apply only to one of the two file arrangements, described
below.

9.4.3.1 Reading Delimited Data

GET DATA /TYPE=TXT
JFILE={"file_name’ file_handle}
[/ARRANGEMENT={DELIMITED,FIXED}]
[/FIRSTCASE={first_case}]
[/IMPORTCASE={ALL,FIRST max_cases,PERCENT percent}]

/DELIMITERS="delimiters"
[/QUALIFIER="quotes"
[/DELCASE={LINE,VARIABLES n_variables}|
/VARIABLES=del_varl [del_var2]. ..

where each del_var takes the form:
variable format

The GET DATA command with TYPE=TXT and ARRANGEMENT=DELIMITED
reads input data from text files in delimited format, where fields are separated by a set
of user-specified delimiters. Its capabilities are similar to those of DATA LIST FREE (see
Section 8.5.2 [DATA LIST FREE], page 67), with a few enhancements.

The required FILE subcommand and optional FIRSTCASE and IMPORTCASE subcommands
are described above (see Section 9.4.3 [GET DATA /TYPE=TXT], page 83).

DELIMITERS, which is required, specifies the set of characters that may separate fields.
Each character in the string specified on DELIMITERS separates one field from the next. The
end of a line also separates fields, regardless of DELIMITERS. Two consecutive delimiters in
the input yield an empty field, as does a delimiter at the end of a line. A space character
as a delimiter is an exception: consecutive spaces do not yield an empty field and neither
does any number of spaces at the end of a line.

To use a tab as a delimiter, specify ‘\t’ at the beginning of the DELIMITERS string. To
use a backslash as a delimiter, specify ‘\\’ as the first delimiter or, if a tab should also be
a delimiter, immediately following ‘\t’. To read a data file in which each field appears on
a separate line, specify the empty string for DELIMITERS.

The optional QUALIFIER subcommand names one or more characters that can be used
to quote values within fields in the input. A field that begins with one of the specified
quote characters ends at the next matching quote. Intervening delimiters become part of
the field, instead of terminating it. The ability to specify more than one quote character is
a PSPP extension.

Chapter 9: System and Portable File I/O 85

The character specified on QUALIFIER can be embedded within a field that it quotes by
doubling the qualifier. For example, if <’ is specified on QUALIFIER, then *a’’b’ specifies
a field that contains ‘a’b’.

The DELCASE subcommand controls how data may be broken across lines in the data
file. With LINE, the default setting, each line must contain all the data for exactly one
case. For additional flexibility, to allow a single case to be split among lines or multiple
cases to be contained on a single line, specify VARIABLES n_variables, where n_variables
is the number of variables per case.

The VARIABLES subcommand is required and must be the last subcommand. Specify the
name of each variable and its input format (see Section 6.7.4 [Input and Output Formats],
page 32) in the order they should be read from the input file.

Examples

On a Unix-like system, the ‘/etc/passwd’ file has a format similar to this:
root:1nyeSP5gD$pDq/:0:0:,,,:/root:/bin/bash
blp:1BrP/pFg4$g70G:1000:1000:Ben Pfaff,,,:/home/blp:/bin/bash
john:1JBuq/Fioq$g4A:1001:1001:John Darrington,,,:/home/john:/bin/bash
jhs:1D3114hPL$88X1:1002:1002: Jason Stover,,,:/home/jhs:/bin/csh

The following syntax reads a file in the format used by ‘/etc/passwd’:

GET DATA /TYPE=TXT /FILE=’/etc/passwd’ /DELIMITERS=’:’
/VARIABLES=username A20
password A40

uid F10

gid F10

gecos A40

home A40

shell A40.

Consider the following data on used cars:

model year mileage price type age
Civic 2002 29883 15900 Si 2
Civic 2003 13415 15900 EX 1
Civic 1992 107000 3800 n/a 12
Accord 2002 26613 17900 EX 1

The following syntax can be used to read the used car data:

GET DATA /TYPE=TXT /FILE=’cars.data’ /DELIMITERS=’ °’ /FIRSTCASE=2
/VARIABLES=model A8
year F4
mileage F6
price F5
type A4
age F2.

Consider the following information on animals in a pet store:

’Pet’’s Name’, "Age", "Color", "Date Received", "Price", "Height", "Type"
, (Years), , , (Dollars), ,

Chapter 9: System and Portable File I/O 86

"Rover", 4.5, Brown, "12 Feb 2004", 80, ’1’’4"’, "Dog"
"Charlie", , Gold, "5 Apr 2007", 12.3, "3""", "Fish"
"Molly", 2, Black, "12 Dec 2006", 25, ’5"’, "Cat"
"Gilly", , White, "10 Apr 2007", 10, "3""", "Guinea Pig"
The following syntax can be used to read the pet store data:
GET DATA /TYPE=TXT /FILE=’pets.data’ /DELIMITERS=’, ’ /QUALIFIER=’’’"’ /ESCAPE

/FIRSTCASE=3
/VARIABLES=name A10
age F3.1
color A5
received EDATE10
price F5.2
height ab
type all.

9.4.3.2 Reading Fixed Columnar Data

GET DATA /TYPE=TXT
JFILE={"file_name’ file_handle}
[/ARRANGEMENT={DELIMITED,FIXED}]
[/FIRSTCASE={first_case}|
[/IMPORTCASE={ALL,FIRST max_cases, PERCENT percent}|

[/FIXCASE=n]
/VARIABLES fixed_var [fixed_var]. . .
[/rec# fixed_var [fixed_var]...]...
where each fixed_var takes the form:
variable start-end format

The GET DATA command with TYPE=TXT and ARRANGEMENT=FIXED reads input
data from text files in fixed format, where each field is located in particular fixed column
positions within records of a case. Its capabilities are similar to those of DATA LIST FIXED
(see Section 8.5.1 [DATA LIST FIXED], page 64), with a few enhancements.

The required FILE subcommand and optional FIRSTCASE and IMPORTCASE subcommands
are described above (see Section 9.4.3 [GET DATA /TYPE=TXT], page 83).

The optional FIXCASE subcommand may be used to specify the positive integer number
of input lines that make up each case. The default value is 1.

The VARIABLES subcommand, which is required, specifies the positions at which each
variable can be found. For each variable, specify its name, followed by its start and end
column separated by ‘=’ (e.g. ‘0-9’), followed by an input format type (e.g. ‘F’) or a full
format specification (e.g. ‘DOLLAR12.2’). For this command, columns are numbered starting
from 0 at the left column. Introduce the variables in the second and later lines of a case by
a slash followed by the number of the line within the case, e.g. /2’ for the second line.

Examples
Consider the following data on used cars:

model year mileage price type age

Chapter 9: System and Portable File I/O 87

Civic 2002 29883 15900 Si 2
Civic 2003 13415 15900 EX 1
Civic 1992 107000 3800 n/a 12
Accord 2002 26613 17900 EX 1

The following syntax can be used to read the used car data:

GET DATA /TYPE=TXT /FILE=’cars.data’ /ARRANGEMENT=FIXED /FIRSTCASE=2
/VARIABLES=model 0-7 A
year 8-15 F
mileage 16-23 F
price 24-31 F
type 32-40 A
age 40-47 F.

9.5 IMPORT

IMPORT
JFILE="file_name’
/TYPE={COMM,TAPE}
/DROP=var_Iist
JKEEP=var_list
/RENAME=(src_names=target_names). . .

The IMPORT transformation clears the active dataset dictionary and data and replaces
them with a dictionary and data from a system file or portable file.

The FILE subcommand, which is the only required subcommand, specifies the portable
file to be read as a file name string or a file handle (see Section 6.9 [File Handles], page 42).

The TYPE subcommand is currently not used.
DROP, KEEP, and RENAME follow the syntax used by GET (see Section 9.3 [GET], page 80).

IMPORT does not cause the data to be read; only the dictionary. The data is read later,
when a procedure is executed.

Use of IMPORT to read a system file is a PSPP extension.

9.6 SAVE

SAVE
JOUTFILE={"file_name’ file_handle}
J/UNSELECTED={RETAIN,DELETE}
/{UNCOMPRESSED,COMPRESSED,ZCOMPRESSED }
/PERMISSIONS={WRITEABLE,READONLY}
/DROP=var_list
J/KEEP=var_list
/VERSION=version
/RENAME=(src_.names=target_names). . .
/NAMES
/MAP

The SAVE procedure causes the dictionary and data in the active dataset to be written
to a system file.

Chapter 9: System and Portable File I/0O 88

OUTFILE is the only required subcommand. Specify the system file to be written as a
string file name or a file handle (see Section 6.9 [File Handles], page 42).

By default, cases excluded with FILTER are written to the system file. These can be
excluded by specifying DELETE on the UNSELECTED subcommand. Specifying RETAIN makes
the default explicit.

The UNCOMPRESSED, COMPRESSED, and ZCOMPRESSED subcommand determine the system
file’s compression level:

UNCOMPRESSED
Data is not compressed. Each numeric value uses 8 bytes of disk space. Each
string value uses one byte per column width, rounded up to a multiple of 8
bytes.

COMPRESSED
Data is compressed with a simple algorithm. Each integer numeric value be-
tween —99 and 151, inclusive, or system missing value uses one byte of disk
space. Each 8-byte segment of a string that consists only of spaces uses 1 byte.
Any other numeric value or 8-byte string segment uses 9 bytes of disk space.

ZCOMPRESSED
Data is compressed with the “deflate” compression algorithm specified in
RFC 1951 (the same algorithm used by gzip). Files written with this
compression level cannot be read by PSPP 0.8.1 or earlier or by SPSS 20 or
earlier.

COMPRESSED is the default compression level. The SET command (see Section 17.20
[SET], page 267) can change this default.

The PERMISSIONS subcommand specifies permissions for the new system file. WRITE-
ABLE, the default, creates the file with read and write permission. READONLY creates
the file for read-only access.

By default, all the variables in the active dataset dictionary are written to the system
file. The DROP subcommand can be used to specify a list of variables not to be written. In
contrast, KEEP specifies variables to be written, with all variables not specified not written.

Normally variables are saved to a system file under the same names they have in the
active dataset. Use the RENAME subcommand to change these names. Specify, within paren-
theses, a list of variable names followed by an equals sign (‘=’) and the names that they
should be renamed to. Multiple parenthesized groups of variable names can be included on
a single RENAME subcommand. Variables’ names may be swapped using a RENAME subcom-
mand of the form /RENAME=(A B=B A).

Alternate syntax for the RENAME subcommand allows the parentheses to be eliminated.
When this is done, only a single variable may be renamed at once. For instance,
/RENAME=A=B. This alternate syntax is deprecated.

DROP, KEEP, and RENAME are performed in left-to-right order. They each may be present
any number of times. SAVE never modifies the active dataset. DROP, KEEP, and RENAME only
affect the system file written to disk.

The VERSION subcommand specifies the version of the file format. Valid versions are 2
and 3. The default version is 3. In version 2 system files, variable names longer than 8
bytes are truncated. The two versions are otherwise identical.

Chapter 9: System and Portable File I/O 89

The NAMES and MAP subcommands are currently ignored.

SAVE causes the data to be read. It is a procedure.

9.7 SAVE DATA COLLECTION

SAVE DATA COLLECTION
JOUTFILE={"file_name’ file_handle}
/METADATA={"file_name’ file_handle}
/{UNCOMPRESSED,COMPRESSED,ZCOMPRESSED}
/PERMISSIONS={WRITEABLE,READONLY}
/DROP=var_Iist
J/KEEP=var_list
/VERSION=version
/RENAME=(src_names=target_names). . .
/NAMES
/MAP

Like SAVE, SAVE DATA COLLECTION writes the dictionary and data in the active dataset
to a system file. In addition, it writes metadata to an additional XML metadata file.

OUTFILE is required. Specify the system file to be written as a string file name or a
file handle (see Section 6.9 [File Handles], page 42).

METADATA is also required. Specify the metadata file to be written as a string file
name or a file handle. Metadata files customarily use a .mdd extension.

The current implementation of this command is experimental. It only outputs an ap-
proximation of the metadata file format. Please report bugs.

Other subcommands are optional. They have the same meanings as in the SAVE com-
mand.

SAVE DATA COLLECTION causes the data to be read. It is a procedure.

9.8 SAVE TRANSLATE

SAVE TRANSLATE
JOUTFILE={"file_name’ file_handle}
/TYPE={CSV,TAB}

[/REPLACE]
[/MISSING={IGNORE,RECODE}]

[/DROP=var_list]

[/KEEP=var_list]
[/RENAME=(src_names=target_names). . .]
[/UNSELECTED={RETAIN,DELETE}|
[/MAP]

. . .additional subcommands depending on TYPE. ..

The SAVE TRANSLATE command is used to save data into various formats understood by
other applications.

Chapter 9: System and Portable File I/O 90

The OUTFILE and TYPE subcommands are mandatory. OUTFILE specifies the file to be
written, as a string file name or a file handle (see Section 6.9 [File Handles|, page 42). TYPE
determines the type of the file or source to read. It must be one of the following;:

CSV Comma-separated value format,

TAB Tab-delimited format.

By default, SAVE TRANSLATE does not overwrite an existing file. Use REPLACE to force
an existing file to be overwritten.

With MISSING=IGNORE, the default, SAVE TRANSLATE treats user-missing values as if
they were not missing. Specify MISSING=RECODE to output numeric user-missing values
like system-missing values and string user-missing values as all spaces.

By default, all the variables in the active dataset dictionary are saved to the system file,
but DROP or KEEP can select a subset of variable to save. The RENAME subcommand can also
be used to change the names under which variables are saved; because they are used only in
the output, these names do not have to conform to the usual PSPP variable naming rules.
UNSELECTED determines whether cases filtered out by the FILTER command are written to
the output file. These subcommands have the same syntax and meaning as on the SAVE
command (see Section 9.6 [SAVE], page 87).

Each supported file type has additional subcommands, explained in separate sections
below.

SAVE TRANSLATE causes the data to be read. It is a procedure.

9.8.1 Writing Comma- and Tab-Separated Data Files

SAVE TRANSLATE
/OUTFILE={"file_name’ file_handle}
JTYPE=CSV
[/REPLACE]
[/MISSING={IGNORE,RECODE}|

[/DROP=var_list]

[/ KEEP=var_list]
[/RENAME=(src_names=target_names). . .]
[/UNSELECTED={RETAIN,DELETE}]

[/FIELDNAMES]

[/CELLS={VALUES,LABELS}]

[/TEXTOPTIONS DELIMITER="delimiter’]
[/TEXTOPTIONS QUALIFIER="qualifier’]
[/TEXTOPTIONS DECIMAL={DOT,COMMA}|
[/JTEXTOPTIONS FORMAT={PLAIN,VARIABLE}]

The SAVE TRANSLATE command with TYPE=CSV or TYPE=TAB writes data in a
comma- or tab-separated value format similar to that described by RFC 4180. Each variable
becomes one output column, and each case becomes one line of output. If FIELDNAMES
is specified, an additional line at the top of the output file lists variable names.

Chapter 9: System and Portable File I/O 91

The CELLS and TEXTOPTIONS FORMAT settings determine how values are written
to the output file:

CELLS=VALUES FORMAT=PLAIN (the default settings)

Writes variables to the output in “plain” formats that ignore the details of
variable formats. Numeric values are written as plain decimal numbers with
enough digits to indicate their exact values in machine representation. Numeric
values include ‘e’ followed by an exponent if the exponent value would be less
than -4 or greater than 16. Dates are written in MM/DD/YYYY format and
times in HH:MM:SS format. WKDAY and MONTH values are written as
decimal numbers.

Numeric values use, by default, the decimal point character set with SET

DECIMAL (see [SET DECIMAL], page 269). Use DECIMAL=DOT or DEC-
IMAL=COMMA to force a particular decimal point character.

CELLS=VALUES FORMAT=VARIABLE
Writes variables using their print formats. Leading and trailing spaces are re-
moved from numeric values, and trailing spaces are removed from string values.

CELLS=LABEL FORMAT=PLAIN

CELLS=LABEL FORMAT=VARIABLE
Writes value labels where they exist, and otherwise writes the values themselves
as described above.

Regardless of CELLS and TEXTOPTIONS FORMAT, numeric system-missing values
are output as a single space.

For TYPE=TAB, tab characters delimit values. For TYPE=CSV, the TEXTOPTIONS
DELIMITER and DECIMAL settings determine the character that separate values within a
line. If DELIMITER is specified, then the specified string separate values. If DELIMITER
is not specified, then the default is a comma with DECIMAL=DOT or a semicolon with
DECIMAL=COMMA. If DECIMAL is not given either, it is implied by the decimal point
character set with SET DECIMAL (see [SET DECIMAL]J, page 269).

The TEXTOPTIONS QUALIFIER setting specifies a character that is output before
and after a value that contains the delimiter character or the qualifier character. The
default is a double quote (‘"’). A qualifier character that appears within a value is doubled.

9.9 SYSFILE INFO

SYSFILE INFO FILE='file_name’ [ENCODING="encoding’].

SYSFILE INFO reads the dictionary in an SPSS system file, SPSS/PC+ system file, or
SPSS portable file, and displays the information in its dictionary.

Specify a file name or file handle. SYSFILE INFO reads that file and displays information
on its dictionary.

PSPP automatically detects the encoding of string data in the file, when possible.
The character encoding of old SPSS system files cannot always be guessed correctly,
and SPSS/PC+ system files do not include any indication of their encoding. Specify
the ENCODING subcommand with an TANA character set name as its string argument to

Chapter 9: System and Portable File I/O 92

override the default, or specify ENCODING=’DETECT’ to analyze and report possibly valid
encodings for the system file. The ENCODING subcommand is a PSPP extension.

SYSFILE INFO does not affect the current active dataset.

9.10 XEXPORT

XEXPORT
/OUTFILE="file_name’
/DIGITS=n
/DROP=var_list
JKEEP=var_list
/RENAME=(src_names=target_names). . .
/TYPE={COMM,TAPE}
/MAP

The XEXPORT transformation writes the active dataset dictionary and data to a specified
portable file.

This transformation is a PSPP extension.
It is similar to the EXPORT procedure, with two differences:

e XEXPORT is a transformation, not a procedure. It is executed when the data is read by
a procedure or procedure-like command.

e XEXPORT does not support the UNSELECTED subcommand.
See Section 9.2 [EXPORT], page 80, for more information.

9.11 XSAVE

XSAVE
/OUTFILE="file_name’
/{UNCOMPRESSED,COMPRESSED,ZCOMPRESSED}
/PERMISSIONS={WRITEABLE,READONLY}
/DROP=var_list
JKEEP=var_list
/VERSION=version
/RENAME=(src_names=target_names). . .
/NAMES
/MAP

The XSAVE transformation writes the active dataset’s dictionary and data to a system
file. It is similar to the SAVE procedure, with two differences:

e XSAVE is a transformation, not a procedure. It is executed when the data is read by a
procedure or procedure-like command.

e XSAVE does not support the UNSELECTED subcommand.
See Section 9.6 [SAVE], page 87, for more information.

93

10 Combining Data Files

This chapter describes commands that allow data from system files, portable files, and open
datasets to be combined to form a new active dataset. These commands can combine data
files in the following ways:

e ADD FILES interleaves or appends the cases from each input file. It is used with input
files that have variables in common, but distinct sets of cases.

e MATCH FILES adds the data together in cases that match across multiple input files.
It is used with input files that have cases in common, but different information about
each case.

e UPDATE updates a master data file from data in a set of transaction files. Each case in
a transaction data file modifies a matching case in the primary data file, or it adds a
new case if no matching case can be found.

These commands share the majority of their syntax, which is described in the following
section, followed by one section for each command that describes its specific syntax and
semantics.

10.1 Common Syntax

Per input file:
JFILE={*file_name’}
[/RENAME=(src_names=target_names). . .|
[/IN=var_name]
[/SORT]

Once per command:
/BY var_list[({D1A})] [var_list[({DIA}]]. ..
[/DROP=var_list]
[/ KEEP=var_list]
[/FIRST=var_name|
[/LAST=var_name]
[/MAP)

This section describes the syntactical features in common among the ADD FILES, MATCH
FILES, and UPDATE commands. The following sections describe details specific to each
command.

Each of these commands reads two or more input files and combines them. The com-
mand’s output becomes the new active dataset. None of the commands actually change the
input files. Therefore, if you want the changes to become permanent, you must explicitly
save them using an appropriate procedure or transformation (see Chapter 9 [System and
Portable File I0], page 79).

The syntax of each command begins with a specification of the files to be read as input.
For each input file, specify FILE with a system file or portable file’s name as a string,
a dataset (see Section 6.7 [Datasets|, page 29) or file handle name, (see Section 6.9 [File
Handles|, page 42), or an asterisk (‘*’) to use the active dataset as input. Use of portable
files on FILE is a PSPP extension.

Chapter 10: Combining Data Files 94

At least two FILE subcommands must be specified. If the active dataset is used as an
input source, then TEMPORARY must not be in effect.

Each FILE subcommand may be followed by any number of RENAME subcommands
that specify a parenthesized group or groups of variable names as they appear in the
input file, followed by those variables’ new names, separated by an equals sign (=), e.g.
/RENAME=(0LD1=NEW1) (OLD2=NEW2). To rename a single variable, the parentheses may be
omitted: /RENAME=old=new. Within a parenthesized group, variables are renamed simulta-
neously, so that /RENAME=(A B=B A) exchanges the names of variables A and B. Otherwise,
renaming occurs in left-to-right order.

Each FILE subcommand may optionally be followed by a single IN subcommand, which
creates a numeric variable with the specified name and format F1.0. The IN variable takes
value 1 in an output case if the given input file contributed to that output case, and 0
otherwise. The DROP, KEEP, and RENAME subcommands have no effect on IN variables.

If BY is used (see below), the SORT keyword must be specified after a FILE if that input
file is not already sorted on the BY variables. When SORT is specified, PSPP sorts the input
file’s data on the BY variables before it applies it to the command. When SORT is used, BY
is required. SORT is a PSPP extension.

PSPP merges the dictionaries of all of the input files to form the dictionary of the new
active dataset, like so:

e The variables in the new active dataset are the union of all the input files’ variables,
matched based on their name. When a single input file contains a variable with a given
name, the output file will contain exactly that variable. When more than one input
file contains a variable with a given name, those variables must all have the same type
(numeric or string) and, for string variables, the same width. Variables are matched
after renaming with the RENAME subcommand. Thus, RENAME can be used to resolve
conflicts.

e The variable label for each output variable is taken from the first specified input file
that has a variable label for that variable, and similarly for value labels and missing
values.

o The file label of the new active dataset (see Section 17.12 [FILE LABEL], page 264) is
that of the first specified FILE that has a file label.

e The documents in the new active dataset (see Section 17.5 [DOCUMENT], page 263)
are the concatenation of all the input files’” documents, in the order in which the FILE
subcommands are specified.

e If all of the input files are weighted on the same variable, then the new active dataset
is weighted on that variable. Otherwise, the new active dataset is not weighted.

The remaining subcommands apply to the output file as a whole, rather than to individ-
ual input files. They must be specified at the end of the command specification, following
all of the FILE and related subcommands. The most important of these subcommands is
BY, which specifies a set of one or more variables that may be used to find corresponding
cases in each of the input files. The variables specified on BY must be present in all of the
input files. Furthermore, if any of the input files are not sorted on the BY variables, then
SORT must be specified for those input files.

Chapter 10: Combining Data Files 95

The variables listed on BY may include (A) or (D) annotations to specify ascending or
descending sort order. See Section 12.8 [SORT CASES], page 124, for more details on this
notation. Adding (A) or (D) to the BY subcommand specification is a PSPP extension.

The DROP subcommand can be used to specify a list of variables to exclude from the
output. By contrast, the KEEP subcommand can be used to specify variables to include in
the output; all variables not listed are dropped. DROP and KEEP are executed in left-to-right
order and may be repeated any number of times. DROP and KEEP do not affect variables
created by the IN, FIRST, and LAST subcommands, which are always included in the new
active dataset, but they can be used to drop BY variables.

The FIRST and LAST subcommands are optional. They may only be specified on MATCH
FILES and ADD FILES, and only when BY is used. FIRST and LIST each adds a numeric
variable to the new active dataset, with the name given as the subcommand’s argument
and F1.0 print and write formats. The value of the FIRST variable is 1 in the first output
case with a given set of values for the BY variables, and 0 in other cases. Similarly, the LAST
variable is 1 in the last case with a given of BY values, and 0 in other cases.

When any of these commands creates an output case, variables that are only in files
that are not present for the current case are set to the system-missing value for numeric
variables or spaces for string variables.

These commands may combine any number of files, limited only by the machine’s mem-
ory.

10.2 ADD FILES
ADD FILES

Per input file:
JFILE={*file_name’}
[/RENAME=(src_names=target_names). . .]
[/IN=var_name]
[/SORT]

Once per command:

[/BY var_list[({D|A})] [var_list[({D1A})]. . .]]
[/DROP=var_list]

[/ KEEP=var_list]

[/FIRST=var_name]

[/LAST=var_name]

[/MAP]

ADD FILES adds cases from multiple input files. The output, which replaces the active
dataset, consists all of the cases in all of the input files.

ADD FILES shares the bulk of its syntax with other PSPP commands for combining mul-
tiple data files. See Section 10.1 [Combining Files Common Syntax], page 93, above, for an
explanation of this common syntax.

When BY is not used, the output of ADD FILES consists of all the cases from the first
input file specified, followed by all the cases from the second file specified, and so on. When
BY is used, the output is additionally sorted on the BY variables.

Chapter 10: Combining Data Files 96

When ADD FILES creates an output case, variables that are not part of the input file
from which the case was drawn are set to the system-missing value for numeric variables or
spaces for string variables.

10.3 MATCH FILES
MATCH FILES

Per input file:
J{FILE,TABLE}={*file_name’}
[/RENAME=(src_names=target_names). . .]
[/IN=var_name]

[/SORT]

Once per command:
/BY var_list[({D|A}] [var_list[({DIA})]. . .]
[/DROP=var_list]
[/KEEP=var_list]
[/FIRST=var_name]
[/LAST=var_name]
[/MAP)

MATCH FILES merges sets of corresponding cases in multiple input files into single cases
in the output, combining their data.

MATCH FILES shares the bulk of its syntax with other PSPP commands for combining
multiple data files. See Section 10.1 [Combining Files Common Syntax], page 93, above,
for an explanation of this common syntax.

How MATCH FILES matches up cases from the input files depends on whether BY is spec-
ified:

e If BY is not used, MATCH FILES combines the first case from each input file to produce
the first output case, then the second case from each input file for the second output
case, and so on. If some input files have fewer cases than others, then the shorter files
do not contribute to cases output after their input has been exhausted.

e IfBY is used, MATCH FILES combines cases from each input file that have identical values
for the BY variables.

When BY is used, TABLE subcommands may be used to introduce table lookup file.
TABLE has same syntax as FILE, and the RENAME, IN, and SORT subcommands may
follow a TABLE in the same way as FILE. Regardless of the number of TABLEs, at least
one FILE must specified. Table lookup files are treated in the same way as other input
files for most purposes and, in particular, table lookup files must be sorted on the BY
variables or the SORT subcommand must be specified for that TABLE.

Cases in table lookup files are not consumed after they have been used once. This
means that data in table lookup files can correspond to any number of cases in FILE
input files. Table lookup files are analogous to lookup tables in traditional relational
database systems.

If a table lookup file contains more than one case with a given set of BY variables, only
the first case is used.

Chapter 10: Combining Data Files 97

When MATCH FILES creates an output case, variables that are only in files that are not
present for the current case are set to the system-missing value for numeric variables or
spaces for string variables.

10.4 UPDATE
UPDATE

Per input file:
JFILE={*file_name’}
[/RENAME=(src_names=target_names). . .]
[/IN=var_name]
[/SORT]

Once per command:
/BY var_list[({D|A})] [var_lList[({DIA})]]. ..
[/DROP=var_list]
[/ KEEP=var_list]
[/MAP]

UPDATE updates a master file by applying modifications from one or more transaction
files.

UPDATE shares the bulk of its syntax with other PSPP commands for combining multiple
data files. See Section 10.1 [Combining Files Common Syntax]|, page 93, above, for an
explanation of this common syntax.

At least two FILE subcommands must be specified. The first FILE subcommand names
the master file, and the rest name transaction files. Every input file must either be sorted
on the variables named on the BY subcommand, or the SORT subcommand must be used
just after the FILE subcommand for that input file.

UPDATE uses the variables specified on the BY subcommand, which is required, to attempt
to match each case in a transaction file with a case in the master file:

e When a match is found, then the values of the variables present in the transaction file
replace those variables’ values in the new active file. If there are matching cases in more
than more transaction file, PSPP applies the replacements from the first transaction file,
then from the second transaction file, and so on. Similarly, if a single transaction file
has cases with duplicate BY values, then those are applied in order to the master file.

When a variable in a transaction file has a missing value or when a string variable’s
value is all blanks, that value is never used to update the master file.

e If a case in the master file has no matching case in any transaction file, then it is copied
unchanged to the output.

e If a case in a transaction file has no matching case in the master file, then it causes a
new case to be added to the output, initialized from the values in the transaction file.

98

11 Manipulating Variables

Every value in a dataset is associated with a variable. Variables describe what the val-
ues represent and properties of those values, such as the format in which they should be
displayed, whether they are numeric or alphabetic and how missing values should be rep-
resented. There are several utility commands for examining and adjusting variables.

11.1 DISPLAY

The DISPLAY command displays information about the variables in the active dataset. A
variety of different forms of information can be requested. By default, all variables in
the active dataset are displayed. However you can select variables of interest using the
/VARIABLES subcommand.

DISPLAY [SORTED
DISPLAY [SORTED
DISPLAY [SORTED
DISPLAY [SORTED
DISPLAY [SORTED
DISPLAY [SORTED

[

|

[

NAMES [[/VARIABLES=]var_list].
INDEX [[/VARIABLES=]var_list].

LABELS [[/VARIABLES=]var_list].
VARIABLES [[/VARIABLES=]var_list].
DICTIONARY [[/VARIABLES=]var_list].
SCRATCH [[/VARIABLES=]|var_list].
DISPLAY [SORTED] ATTRIBUTES [[/VARIABLES=]var_list|.
DISPLAY [SORTED] @QATTRIBUTES [[/VARIABLES=]var_list].
DISPLAY [SORTED]| VECTORS.

The following keywords primarily cause information about variables to be displayed.
With these keywords, by default information is displayed about all variable in the active
dataset, in the order that variables occur in the active dataset dictionary. The SORTED
keyword causes output to be sorted alphabetically by variable name.

NAMES The variables’ names are displayed.

INDEX The variables’ names are displayed along with a value describing their position
within the active dataset dictionary.

LABELS Variable names, positions, and variable labels are displayed.

VARIABLES
Variable names, positions, print and write formats, and missing values are dis-
played.

DICTIONARY
Variable names, positions, print and write formats, missing values, variable
labels, and value labels are displayed.

SCRATCH
Variable names are displayed, for scratch variables only (see Section 6.7.5
[Scratch Variables|, page 41).

ATTRIBUTES

QATTRIBUTES
Datafile and variable attributes are displayed. The first form of the command
omits those attributes whose names begin with @ or $@. In the second for, all
datafile and variable attributes are displayed.

Chapter 11: Manipulating Variables 99

With the VECTOR keyword, DISPLAY lists all the currently declared vectors. If the SORTED
keyword is given, the vectors are listed in alphabetical order; otherwise, they are listed in
textual order of definition within the PSPP syntax file.

For related commands, see Section 17.6 [DISPLAY DOCUMENTS], page 263, and
Section 17.7 [DISPLAY FILE LABEL], page 263.

11.2 NUMERIC

NUMERIC explicitly declares new numeric variables, optionally setting their output formats.
NUMERIC var_list [(fmt_spec)] [/var_list [(fmt_spec)]]. . .

Specify the names of the new numeric variables as var_list. If you wish to set the vari-
ables’ output formats, follow their names by an output format specification in parentheses
(see Section 6.7.4 [Input and Output Formats|, page 32); otherwise, the default is F8.2.

Variables created with NUMERIC are initialized to the system-missing value.

11.3 STRING

STRING creates new string variables.
STRING var_list (fit_spec) [/var_list (fmt_spec)] [...].

Specify a list of names for the variable you want to create, followed by the desired
output format specification in parentheses (see Section 6.7.4 [Input and Output Formats],
page 32). Variable widths are implicitly derived from the specified output formats. The
created variables will be initialized to spaces.

If you want to create several variables with distinct output formats, you can either use
two or more separate STRING commands, or you can specify further variable list and format
specification pairs, each separated from the previous by a slash (‘/’).

The following example is one way to create three string variables; Two of the variables
have format A24 and the other A80:

STRING firstname lastname (A24) / address (A80).
Here is another way to achieve the same result:

STRING firstname lastname (A24).
STRING address (A80).

. and here is yet another way:
STRING firstname (A24).

STRING lastname (A24).
STRING address (A80).

11.4 RENAME VARIABLES

RENAME VARIABLES changes the names of variables in the active dataset.
RENAME VARIABLES (old_-names=new_names). . . .

Specify lists of the old variable names and new variable names, separated by an equals

sign (‘="), within parentheses. There must be the same number of old and new variable
names. Each old variable is renamed to the corresponding new variable name. Multiple

Chapter 11: Manipulating Variables 100

parenthesized groups of variables may be specified. When the old and new variable names
contain only a single variable name, the parentheses are optional.

RENAME VARIABLES takes effect immediately. It does not cause the data to be read.

RENAME VARIABLES may not be specified following TEMPORARY (see Section 13.6 [TEM-
PORARY], page 134).

11.5 SORT VARIABLES

SORT VARIABLES reorders the variables in the active dataset’s dictionary according to a
chosen sort key.

SORT VARIABLES [BY]
(NAME | TYPE | FORMAT | LABEL | VALUES | MISSING | MEASURE
| ROLE | COLUMNS | ALIGNMENT | ATTRIBUTE name)
[(D)].
The main specification is one of the following identifiers, which determines how the
variables are sorted:

NAME Sorts the variables according to their names, in a case-insensitive fashion. How-
ever, when variable names differ only in a number at the end, they are sorted
numerically. For example, VAR5 is sorted before VAR400 even though ‘4’ pre-
cedes ‘5.

TYPE Sorts numeric variables before string variables, and shorter string variables
before longer ones.

FORMAT Groups variables by print format; within a format, sorts narrower formats before
wider ones; with the same format and width, sorts fewer decimal places before
more decimal places. See Section 11.10 [FORMATS], page 102.

LABEL Sorts variables without a variable label before those with one. See Section 11.7
[VARIABLE LABELS], page 101.

VALUES Sorts variables without value labels before those with some. See Section 11.11
[VALUE LABELS], page 102.

MISSING Sorts variables without missing values before those with some. See Section 11.13
[MISSING VALUES], page 103.

MEASURE
Sorts nominal variables first, followed by ordinal variables, followed by scale
variables. See Section 11.17 [VARIABLE LEVEL], page 105.

ROLE Groups variables according to their role. See Section 11.18 [VARIABLE ROLE],
page 105.

COLUMNS
Sorts variables in ascending display width. See Section 11.16 [VARIABLE
WIDTH], page 104.

ALIGNMENT
Sorts variables according to their alignment, first left-aligned, then
right-aligned, then centered. See Section 11.15 [VARIABLE ALIGNMENT],
page 104.

Chapter 11: Manipulating Variables 101

ATTRIBUTE name
Sorts variables according to the first value of their name attribute. Vari-
ables without attribute are sorted first. See Section 11.14 [VARIABLE AT-
TRIBUTE], page 103.

Only one sort criterion can be specified. The sort is “stable,” so to sort on multiple
criteria one may perform multiple sorts. For example, the following will sort primarily
based on alignment, with variables that have the same alignment ordered based on display
width:

SORT VARIABLES BY COLUMNS.
SORT VARIABLES BY ALIGNMENT.

Specify (D) to reverse the sort order.

11.6 DELETE VARIABLES

DELETE VARIABLES deletes the specified variables from the dictionary.
DELETE VARIABLES var_list.

DELETE VARIABLES should not be used after defining transformations but before execut-
ing a procedure. If it is used in such a context, it causes the data to be read. If it is used
while TEMPORARY is in effect, it causes the temporary transformations to become permanent.

DELETE VARIABLES may not be used to delete all variables from the dictionary; use NEW
FILE to do that (see Section 8.11 [NEW FILE], page 74).

11.7 VARIABLE LABELS

In addition to a variable’s name, each variable can have a label. Whereas a variable name is a
concise, easy-to-type mnemonic for the variable, a label may be longer and more descriptive.

VARIABLE LABELS
variable ’label’
[variable ’label’]. . .

VARIABLE LABELS associates explanatory names with variables. This name, called a
variable label, is displayed by statistical procedures.

Specify each variable followed by its label as a quoted string. Variable-label pairs may
be separated by an optional slash /.

If a listed variable already has a label, the new one replaces it. Specifying an empty
string as the label, e.g.‘” >’ removes a label.

11.8 PRINT FORMATS

PRINT FORMATS var_list (fmt_spec) [var_list (fmt_spec)]. . ..

PRINT FORMATS sets the print formats for the specified variables to the specified format
specification.

Its syntax is identical to that of FORMATS (see Section 11.10 [FORMATS], page 102), but
PRINT FORMATS sets only print formats, not write formats.

Chapter 11: Manipulating Variables 102

11.9 WRITE FORMAT'S

WRITE FORMATS var_list (fmt_spec) [var_list (fmt_spec)]. . ..

WRITE FORMATS sets the write formats for the specified variables to the specified format
specification. Its syntax is identical to that of FORMATS (see Section 11.10 [FORMATS],
page 102), but WRITE FORMATS sets only write formats, not print formats.

11.10 FORMAT'S

FORMATS var_list (fmt_spec) [var_list (fmt_spec)]. . ..
FORMATS set both print and write formats for the specified variables to the specified
format specification. See Section 6.7.4 [Input and Output Formats|, page 32.

Specify a list of variables followed by a format specification in parentheses. The print
and write formats of the specified variables will be changed. All of the variables listed
together must have the same type and, for string variables, the same width.

Additional lists of variables and formats may be included following the first one.

FORMATS takes effect immediately. It is not affected by conditional and looping structures
such as DO IF or LOOP.

11.11 VALUE LABELS

The values of a variable can be associated with an arbitrary text string. In this way, a short
value can stand for a longer, more descriptive label.

Both numeric and string variables can be given labels. For string variables, the values
are case-sensitive, so that, for example, a capitalized value and its lowercase variant would
have to be labeled separately if both are present in the data.

VALUE LABELS
/var_list value ’label’ [value ’label’]. . .
VALUE LABELS allows values of variables to be associated with labels.
To set up value labels for one or more variables, specify the variable names after a slash
(‘77), followed by a list of values and their associated labels, separated by spaces.

Value labels in output are normally broken into lines automatically. Put ‘\n’ in a label
string to force a line break at that point. The label may still be broken into lines at
additional points.

Before VALUE LABELS is executed, any existing value labels are cleared from the variables
specified. Use ADD VALUE LABELS (see Section 11.12 [ADD VALUE LABELS], page 102) to
add value labels without clearing those already present.

11.12 ADD VALUE LABELS

ADD VALUE LABELS has the same syntax and purpose as VALUE LABELS (see Section 11.11

[VALUE LABELS], page 102), but it does not clear value labels from the variables before
adding the ones specified.

ADD VALUE LABELS
/var_list value ’label’ [value ’label’]. . .

Chapter 11: Manipulating Variables 103

11.13 MISSING VALUES

In many situations the data available for analysis is incomplete and a placeholder must be
used in place of a value to indicate that the value is unknown. One way that missing values
are represented is through the $SYSMIS variable (see Section 6.7.2 [System Variables],
page 31). Another, more flexible way is through user-missing values which are determined
on a per variable basis.

The MISSING VALUES command sets user-missing values for variables.
MISSING VALUES var_Iist (missing_values).

where missing_values takes one of the following forms:
numl
numl, num?2
numl, num2, num3
numl THRU num?2
numl THRU num2, num3
stringl
stringl, string2
stringl, string2, string3
As part of a range, LO or LOWEST may take the place of numlI;
HI or HIGHEST may take the place of num2.

MISSING VALUES sets user-missing values for numeric and string variables. Long string
variables may have missing values, but characters after the first 8 bytes of the missing value
must be spaces.

Specify a list of variables, followed by a list of their user-missing values in parentheses.
Up to three discrete values may be given, or, for numeric variables only, a range of values
optionally accompanied by a single discrete value. Ranges may be open-ended on one end,
indicated through the use of the keyword LO or LOWEST or HI or HIGHEST.

The MISSING VALUES command takes effect immediately. It is not affected by conditional
and looping constructs such as DO IF or LOOP.

11.14 VARIABLE ATTRIBUTE

VARIABLE ATTRIBUTE adds, modifies, or removes user-defined attributes associated with
variables in the active dataset. Custom variable attributes are not interpreted by PsPP, but
they are saved as part of system files and may be used by other software that reads them.

VARIABLE ATTRIBUTE
VARIABLES=var_list
ATTRIBUTE=name(’value’) [name(’value’)]. . .
ATTRIBUTE=name|index|(’value’) [name[index](’value’)]. . .
DELETE=name [name]. . .
DELETE=name[index| [name[index]]. . .

The required VARIABLES subcommand must come first. Specify the variables to which
the following ATTRIBUTE or DELETE subcommand should apply.

Use the ATTRIBUTE subcommand to add or modify custom variable attributes. Specify
the name of the attribute as an identifier (see Section 6.1 [Tokens], page 25), followed by the

Chapter 11: Manipulating Variables 104

desired value, in parentheses, as a quoted string. The specified attributes are then added
or modified in the variables specified on VARIABLES. Attribute names that begin with $
are reserved for PSPP’s internal use, and attribute names that begin with @ or $@ are not
displayed by most PSPP commands that display other attributes. Other attribute names
are not treated specially.

Attributes may also be organized into arrays. To assign to an array element, add an
integer array index enclosed in square brackets ([and]) between the attribute name and
value. Array indexes start at 1, not 0. An attribute array that has a single element (number
1) is not distinguished from a non-array attribute.

Use the DELETE subcommand to delete an attribute from the variable specified on
VARIABLES. Specify an attribute name by itself to delete an entire attribute, including
all array elements for attribute arrays. Specify an attribute name followed by an array
index in square brackets to delete a single element of an attribute array. In the latter case,
all the array elements numbered higher than the deleted element are shifted down, filling
the vacated position.

To associate custom attributes with the entire active dataset, instead of with particular
variables, use DATAFILE ATTRIBUTE (see Section 8.3 [DATAFILE ATTRIBUTE], page 62)
instead.

VARIABLE ATTRIBUTE takes effect immediately. It is not affected by conditional and
looping structures such as DO IF or LOOP.

11.15 VARIABLE ALIGNMENT

VARIABLE ALIGNMENT sets the alignment of variables for display editing purposes. It does
not affect the display of variables in the PSPP output.

VARIABLE ALIGNMENT
var_list (LEFT | RIGHT | CENTER)
[/var_list (LEFT | RIGHT | CENTER) |

[/var_list (LEFT | RIGHT | CENTER)]

11.16 VARIABLE WIDTH

VARIABLE WIDTH
var_list (width)
[/var_list (width)]

[/var_list (width) |

VARIABLE WIDTH sets the column width of variables for display editing purposes. It does
not affect the display of variables in the PSPP output.

Chapter 11: Manipulating Variables 105

11.17 VARIABLE LEVEL

VARIABLE LEVEL wariables ({SCALE | NOMINAL | ORDINAL}). ..

VARIABLE LEVEL sets the measurement level of variables as specified. See Section 6.7.1
[Attributes], page 29, for the definitions of the available measurement levels.

11.18 VARIABLE ROLE

VARIABLE ROLE
/role var_list
[/role var_list]. . .

VARIABLE ROLE sets the intended role of a variable for use in dialog boxes in graphical
user interfaces. Each role specifies one of the following roles for the variables that follow it:

INPUT An input variable, such as an independent variable.

TARGET An output variable, such as an dependent variable.

BOTH A variable used for input and output.
NONE No role assigned. (This is a variable’s default role.)
PARTITION

Used to break the data into groups for testing.

SPLIT No meaning except for certain third party software. (This role’s meaning is
unrelated to SPLIT FILE.)

The PSPPIRE GUI does not yet use variable roles as intended.

11.19 VECTOR

Two possible syntaxes:
VECTOR vec_name=var_list.
VECTOR vec_name_list(count [format]).

VECTOR allows a group of variables to be accessed as if they were consecutive members
of an array with a vector(index) notation.

To make a vector out of a set of existing variables, specify a name for the vector followed
by an equals sign (‘=’) and the variables to put in the vector. The variables must be all
numeric or all string, and string variables must have the same width.

To make a vector and create variables at the same time, specify one or more vector
names followed by a count in parentheses. This will create variables named vecl through
veccount. By default, the new variables are numeric with format F8.2, but an alternate
format may be specified inside the parentheses before or after the count and separated from
it by white space or a comma. With a string format such as A8, the variables will be
string variables; with a numeric format, they will be numeric. Variable names including the
suffixes may not exceed 64 characters in length, and none of the variables may exist prior
to VECTOR.

Vectors created with VECTOR disappear after any procedure or procedure-like command
is executed. The variables contained in the vectors remain, unless they are scratch variables
(see Section 6.7.5 [Scratch Variables], page 41).

Variables within a vector may be referenced in expressions using vector (index) syntax.

Chapter 11: Manipulating Variables 106

11.20 MRSETS

MRSETS creates, modifies, deletes, and displays multiple response sets. A multiple response
set is a set of variables that represent multiple responses to a survey question.
Multiple responses are represented in one of the two following ways:

e A multiple dichotomy set is analogous to a survey question with a set of checkboxes.
Each variable in the set is treated in a Boolean fashion: one value (the "counted value")
means that the box was checked, and any other value means that it was not.

e A multiple category set represents a survey question where the respondent is instructed
to list up to n choices. Each variable represents one of the responses.

MRSETS
/MDGROUP NAME=name VARIABLES=var_list VALUE=value
[CATEGORYLABELS={VARLABELS,COUNTEDVALUES}]
[{LABEL="label’, LABELSOURCE=VARLABEL}|

/MCGROUP NAME=name VARIABLES=var_list [LABEL="label’]
/DELETE NAME={[names|,ALL}

/DISPLAY NAME={[names]|,ALL}

Any number of subcommands may be specified in any order.

The MDGROUP subcommand creates a new multiple dichotomy set or replaces an existing
multiple response set. The NAME, VARIABLES, and VALUE specifications are required. The
others are optional:

e NAME specifies the name used in syntax for the new multiple dichotomy set. The name
must begin with ‘¢’; it must otherwise follow the rules for identifiers (see Section 6.1
[Tokens|, page 25).

e VARIABLES specifies the variables that belong to the set. At least two variables must
be specified. The variables must be all string or all numeric.

e VALUE specifies the counted value. If the variables are numeric, the value must be an
integer. If the variables are strings, then the value must be a string that is no longer
than the shortest of the variables in the set (ignoring trailing spaces).

e CATEGORYLABELS optionally specifies the source of the labels for each category in the
set:

— VARLABELS, the default, uses variable labels or, for variables without variable labels,
variable names. PSPP warns if two variables have the same variable label, since
these categories cannot be distinguished in output.

— COUNTEDVALUES instead uses each variable’s value label for the counted value. PSPP
warns if two variables have the same value label for the counted value or if one of
the variables lacks a value label, since such categories cannot be distinguished in
output.

e LABEL optionally specifies a label for the multiple response set. If neither LABEL nor
LABELSOURCE=VARLABEL is specified, the set is unlabeled.

e LABELSOURCE=VARLABEL draws the multiple response set’s label from the first
variable label among the variables in the set; if none of the variables has a label,

Chapter 11: Manipulating Variables 107

the name of the first variable is used. LABELSOURCE=VARLABEL must be used with
CATEGORYLABELS=COUNTEDVALUES.ItiSInutuaHy'eXChnﬂve\Vﬁh.LABEL.

The MCGROUP subcommand creates a new multiple category set or replaces an existing
multiple response set. The NAME and VARIABLES specifications are required, and LABEL is
optional. Their meanings are as described above in MDGROUP. PSPP warns if two variables
in the set have different value labels for a single value, since each of the variables in the set
should have the same possible categories.

The DELETE subcommand deletes multiple response groups. A list of groups may be
named within a set of required square brackets, or ALL may be used to delete all groups.

The DISPLAY subcommand displays information about defined multiple response sets.
Its syntax is the same as the DELETE subcommand.

Multiple response sets are saved to and read from system files by, e.g., the SAVE and
GET command. Otherwise, multiple response sets are currently used only by third party
software.

11.21 LEAVE

LEAVE prevents the specified variables from being reinitialized whenever a new case is pro-
cessed.

LEAVE var_list.

Normally, when a data file is processed, every variable in the active dataset is initialized
to the system-missing value or spaces at the beginning of processing for each case. When a
variable has been specified on LEAVE, this is not the case. Instead, that variable is initialized
to 0 (not system-missing) or spaces for the first case. After that, it retains its value between
cases.

This becomes useful for counters. For instance, in the example below the variable SUM
maintains a running total of the values in the ITEM variable.
DATA LIST /ITEM 1-3.
COMPUTE SUM=SUM+ITEM.
PRINT /ITEM SUM.

LEAVE SUM

BEGIN DATA.

123

404

555

999

END DATA.
Partial output from this example:

123 123.00

404 527.00

555 1082.00

999 2081.00

It is best to use LEAVE command immediately before invoking a procedure command,
because the left status of variables is reset by certain transformations—for instance, COMPUTE
and IF. Left status is also reset by all procedure invocations.

108

12 Data transformations

The psPP procedures examined in this chapter manipulate data and prepare the active
dataset for later analyses. They do not produce output, as a rule.

12.1 AGGREGATE

AGGREGATE
[OUTFILE={*, file_name’,file_handle} [MODE={REPLACE,ADDVARIABLES}]]
[/MISSING=COLUMNWISE]
[/PRESORTED)]
[/DOCUMENT]
[/BREAK=var_list]
/dest_var['label’]. . .=agr_func(src_vars|, args]...). ..

AGGREGATE summarizes groups of cases into single cases. It divides cases into groups that
have the same values for one or more variables called break variables. Several functions are
available for summarizing case contents.

The AGGREGATE syntax consists of subcommands to control its behavior, all of which are
optional, followed by one or more destination variable assigments, each of which uses an
aggregation function to define how it is calculated.

The OUTFILE subcommand, which must be first, names the destination for AGGREGATE
output. It may name a system file by file name or file handle (see Section 6.9 [File Handles],
page 42), a dataset by its name (see Section 6.7 [Datasets|, page 29), or ‘*’ to replace the
active dataset. AGGREGATE writes its output to this file.

With OUTFILE=#* only, MODE may be specified immediately afterward with the value
ADDVARIABLES or REPLACE:

e With REPLACE, the default, the active dataset is replaced by a new dataset which
contains just the break variables and the destination varibles. The new file contains as
many cases as there are unique combinations of the break variables.

e With ADDVARIABLES, the destination variables are added to those in the existing active
dataset. Cases that have the same combination of values in their break variables
receive identical values for the destination variables. The number of cases in the active
dataset remains unchanged. The data must be sorted on the break variables, that is,
ADDVARIABLES implies PRESORTED

If OUTFILE is omitted, AGGREGATE acts as if OUTFILE=* MODE=ADDVARIABLES were speci-
fied.

By default, AGGREGATE first sorts the data on the break variables. If the active dataset
is already sorted or grouped by the break variables, specify PRESORTED to save time. With
MODE=ADDVARIABLES, the data must be pre-sorted.

Specify DOCUMENT to copy the documents from the active dataset into the aggregate file
(see Section 17.5 [DOCUMENT], page 263). Otherwise, the aggregate file does not contain
any documents, even if the aggregate file replaces the active dataset.

Normally, AGGREGATE produces a non-missing value whenever there is enough
non-missing data for the aggregation function in use, that is, just one non-missing
value or, for the SD and SD. aggregation functions, two non-missing values. Specify

Chapter 12: Data transformations 109

/MISSING=COLUMNWISE to make AGGREGATE output a missing value when one or more of
the input values are missing.

The BREAK subcommand is optionally but usually present. On BREAK, list the variables
used to divide the active dataset into groups to be summarized.

AGGREGATE is particular about the order of subcommands. OUTFILE must be first, fol-
lowed by MISSING. PRESORTED and DOCUMENT follow MISSING, in either order, followed by
BREAK, then followed by aggregation variable specifications.

At least one set of aggregation variables is required. Each set comprises a list of ag-
gregation variables, an equals sign (‘="), the name of an aggregation function (see the list
below), and a list of source variables in parentheses. A few aggregation functions do not
accept source variables, and some aggregation functions expect additional arguments after
the source variable names.

AGGREGATE typically creates aggregation variables with no variable label, value labels, or
missing values. Their default print and write formats depend on the aggregation function
used, with details given in the table below. A variable label for an aggregation variable may
be specified just after the variable’s name in the aggregation variable list.

Each set must have exactly as many source variables as aggregation variables. Each
aggregation variable receives the results of applying the specified aggregation function to
the corresponding source variable.

The following aggregation functions may be applied only to numeric variables:

MEAN(var_name. . .)
Arithmetic mean. Limited to numeric values. The default format is F8.2.

MEDIAN(var_name...)
The median value. Limited to numeric values. The default format is F8.2.

SD(var_name. ..)
Standard deviation of the mean. Limited to numeric values. The default format
is F'8.2.

SUM(var_name. ..)
Sum. Limited to numeric values. The default format is F8.2.

These aggregation functions may be applied to numeric and string variables:

CGT(var_name. .., value)

CLT(var_name. .., value)

CIN(var_name. .., low, high)

COUT (var_name. .., low, high)
Total weight of cases greater than or less than value or inside or outside the
closed range [low,high], respectively. The default format is F5.3.

FGT(var_name. .., value)

FLT(var_name. .., value)

FIN(var_name. .., low, high)

FOUT(var_name. .., low, high)
Fraction of values greater than or less than value or inside or outside the closed
range [low,high|, respectively. The default format is F5.3.

Chapter 12: Data transformations 110

FIRST(var_name. ..)

LAST(var_name. ..)
First or last non-missing value, respectively, in break group. The aggregation
variable receives the complete dictionary information from the source variable.
The sort performed by AGGREGATE (and by SORT CASES) is stable. This means
that the first (or last) case with particular values for the break variables before
sorting is also the first (or last) case in that break group after sorting.

MIN(var_name...)

MAX(var_name. . .)
Minimum or maximum value, respectively. The aggregation variable receives
the complete dictionary information from the source variable.

N(var_name. . .)

NMISS(var_name. . .)
Total weight of non-missing or missing values, respectively. The default format
is F7.0 if weighting is not enabled, F8.2 if it is (see Section 13.7 [WEIGHT],
page 135).

NU(var_name. . .)

NUMISS(var_name. ..)
Count of non-missing or missing values, respectively, ignoring case weights. The
default format is F7.0.

PGT (var_name. .., value)

PLT(var_name. .., value)

PIN(var_name. .., low, high)

POUT (var_name. .., low, high)
Percentage between 0 and 100 of values greater than or less than VALUE or
inside or outside the closed range [low,high], respectively. The default format
is F5.1.

These aggregation functions do not accept source variables:

N Total weight of cases aggregated to form this group. The default format is F7.0
if weighting is not enabled, F8.2 if it is (see Section 13.7 [WEIGHT], page 135).

NU Count of cases aggregated to form this group, ignoring case weights. The default
format is F'7.0.

Aggregation functions compare string values in terms of internal character codes. On
most modern computers, this is ASCII or a superset thereof.

The aggregation functions listed above exclude all user-missing values from calculations.
To include user-missing values, insert a period (*.’) at the end of the function name. (e.g.
‘SUM.’). (Be aware that specifying such a function as the last token on a line causes the

period to be interpreted as the end of the command.)

AGGREGATE both ignores and cancels the current SPLIT FILE settings (see Section 13.5
[SPLIT FILE], page 131).

Chapter 12: Data transformations 111

12.1.1 Aggregate Example

The personnel.sav dataset provides the occupations and salaries of many individuals.
For many purposes however such detailed information is not interesting, but often the
aggregated statistics of each occupation are of interest. In Example 12.1 the AGGREGATE
command is used to calculate the mean, the median and the standard deviation of each
occupation.

(A
GET FILE="personnel.sav".
AGGREGATE OUTFILE=* MODE=REPLACE
/BREAK=occupation
/occ_mean_salary=MEAN (salary)
/occ_median_salary=MEDIAN(salary)
/occ_std_dev_salary=SD(salary).

LIST.

Example 12.1: Calculating aggregated statistics from the personnel.sav file.

Since we chose the ‘MODE=REPLACE’ option, in Results 12.1 cases for the individual persons
are no longer present. They have each been replaced by a single case per aggregated value.

Data List
e +-= -— + -— + -— -+
| occupation |occ_mean_salary|occ_median_salary|occ_std_dev_salary|
+-—= ————— Fom— + -— -+
|Artist | 37836.18| 34712.50] 7631.48]
| Baker | 45075.20] 45075.20] 4411.21]|
|Barrister | 39504.00| 39504.00| .
|Carpenter I 39349.11| 36190.04| 7453.40]
|Cleaner | 41142.50]| 39647.49| 14378.98]
| Cook | 40357.791 43194.00] 11064 .51
Manager	46452 .14 45657 .56	6901.69]	
[Mathematician	34531.06	34763.06	5267.68
Painter	45063.55	45063.55	15159.67
Payload Specialistl	34355.72	34355.72	N
Plumber	40413.91	40410.00]	4726.05]
Scientist	36687.07	36803.83	10873.54]
Scrientist	42530.65	42530.65	N
Tailor	34586.79	34586.79	3728.98]
B e et +-- -— + -— + -— -+

Results 12.1: Aggregated mean, median and standard deviation per occupation.

Note that some values for the standard deviation are blank. This is because there is
only one case with the respective occupation.

12.2 AUTORECODE

AUTORECODE VARIABLES=src_vars INTO dest_vars
[/DESCENDING |
[/PRINT]
[/GROUP |
[/BLANK = {VALID, MISSING} |

Chapter 12: Data transformations 112

The AUTORECODE procedure considers the n values that a variable takes on and maps
them onto values 1...n on a new numeric variable.

Subcommand VARIABLES is the only required subcommand and must come first. Specify
VARIABLES, an equals sign (‘="), a list of source variables, INTO, and a list of target variables.
There must the same number of source and target variables. The target variables must not
already exist.

AUTORECODE ordinarily assigns each increasing non-missing value of a source variable (for
a string, this is based on character code comparisons) to consecutive values of its target
variable. For example, the smallest non-missing value of the source variable is recoded to
value 1, the next smallest to 2, and so on. If the source variable has user-missing values,
they are recoded to consecutive values just above the non-missing values. For example, if
a source variables has seven distinct non-missing values, then the smallest missing value
would be recoded to 8, the next smallest to 9, and so on.

Use DESCENDING to reverse the sort order for non-missing values, so that the largest non-
missing value is recoded to 1, the second-largest to 2, and so on. Even with DESCENDING,
user-missing values are still recoded in ascending order just above the non-missing values.

The system-missing value is always recoded into the system-missing variable in target
variables.

If a source value has a value label, then that value label is retained for the new value in
the target variable. Otherwise, the source value itself becomes each new value’s label.

Variable labels are copied from the source to target variables.
PRINT is currently ignored.

The GROUP subcommand is relevant only if more than one variable is to be recoded. It
causes a single mapping between source and target values to be used, instead of one map
per variable. With GROUP, user-missing values are taken from the first source variable that
has any user-missing values.

If /BLANK=MISSING is given, then string variables which contain only whitespace are
recoded as SYSMIS. If /BLANK=VALID is specified then they are allocated a value like any
other. /BLANK is not relevant to numeric values. /BLANK=VALID is the default.

AUTORECODE is a procedure. It causes the data to be read.

12.2.1 Autorecode Example

In the file personnel.sav, the variable occupation is a string variable. Except for data of
a purely commentary nature, string variables are generally a bad idea. One reason is that
data entry errors are easily overlooked. This has happened in personnel.sav; one entry
which should read “Scientist” has been mistyped as “Scrientist”. In Example 12.2 first, this
error is corrected by the DO IF clause,! then we use AUTORECODE to create a new numeric
variable which takes recoded values of occupation. Finally, we remove the old variable and
rename the new variable to the name of the old variable.

1 One must use care when correcting such data input errors rather than msimply marking them as missing.
For example, if an occupation has been entered “Barister”, did the person mean “Barrister” or did she
mean “Barista”?

Chapter 12: Data transformations 113

get file=’personnel.sav’.

* Correct a typing error in the original file.

do if occupation = "Scrientist".
compute occupation = "Scientist".
end if.

autorecode

variables = occupation into occ
/blank = missing.

* Delete the old variable.
delete variables occupation.

* Rename the new variable to the old variable’s name.
rename variables (occ = occupation).

* Inspect the new variable.
display dictionary /variables=occupation.

- J

Example 12.2: Changing a string variable to a numeric variable using AUTORECODE after
correcting a data entry error

()
& firstname Variable -= New Name o
S lastname) Old New
& sex occupation
E), Date of birth T
E] Annual sa...efore tax New Name| occ|
Cancel
Add New Name
Recode starting from
. Reset
@ Lowest value O Highest value
[] use the same recoding scheme for all variables
: . Hel
[] Treat blank string values as missing P
- J

Screenshot 12.1: Autorecode dialog box set to recode occupation to occ

Notice in Result 12.1, how the new variable has been automatically allocated value labels
which correspond to the strings of the old variable. This means that in future analyses the
descriptive strings are reported instead of the numeric values.

Chapter 12: Data transformations 114

10 |Payload Specialist
11 |Plumber

12 |Scientist

13 |Tailor
- S

Variables
pomm pomm o + —4—————t ————m Fmmm +
| | | Measurement | | | | Print | Write |
| Name |Position]| Level | Role|Width|Alignment| Format | Format |
Fomm o +- -—- + —-————+ + e -—+
|occupation| 6 | Unknown | Input | 8|Right |F2.0 |F2.0 |
pomm fom— o Fommm + ——————t + Fmmm +
Value Labels
+-—= e +
|Variable Value | Label |
+-—- o +
|occupation 1 |Artist
| 2 |Baker
3	Barrister
4	Carpenter
5	Cleaner
6	Cook
7	Manager
8	Mathematician
9	Painter

Result 12.1: The properties of the occupation variable following AUTORECODE

12.3 COMPUTE
COMPUTE variable = expression.

or
COMPUTE vector(index) = expression.

COMPUTE assigns the value of an expression to a target variable. For each case, the
expression is evaluated and its value assigned to the target variable. Numeric and string
variables may be assigned. When a string expression’s width differs from the target vari-
able’s width, the string result of the expression is truncated or padded with spaces on the
right as necessary. The expression and variable types must match.

For numeric variables only, the target variable need not already exist. Numeric variables
created by COMPUTE are assigned an F8.2 output format. String variables must be declared
before they can be used as targets for COMPUTE.

The target variable may be specified as an element of a vector (see Section 11.19 [VEC-
TOR], page 105). In this case, an expression index must be specified in parentheses fol-
lowing the vector name. The expression index must evaluate to a numeric value that, after
rounding down to the nearest integer, is a valid index for the named vector.

Using COMPUTE to assign to a variable specified on LEAVE (see Section 11.21 [LEAVE],
page 107) resets the variable’s left state. Therefore, LEAVE should be specified following
COMPUTE, not before.

COMPUTE is a transformation. It does not cause the active dataset to be read.

Chapter 12: Data transformations 115

When COMPUTE is specified following TEMPORARY (see Section 13.6 [TEMPORARY],
page 134), the LAG function may not be used (see [LAG], page 55).

12.3.1 Compute Examples

The dataset physiology.sav contains the height and weight of persons. For some purposes,
neither height nor weight alone is of interest. Epidemiologists are often more interested in
the body mass index which can sometimes be used as a predictor for clinical conditions.
The body mass index is defined as the weight of the person in kilograms divided by the
square of the person’s height in metres.?

-
get file=’physiology.sav’.
* height is in mm so we must divide by 1000 to get metres.
compute bmi = weight / (height/1000)%**2.
variable label bmi "Body Mass Index".
descriptives /weight height bmi.

—

Example 12.3: Computing the body mass index from weight and height

Example 12.3 shows how you can use COMPUTE to generate a new variable called bmi
and have every case’s value calculated from the existing values of weight and height. It
also shows how you can add a label to this new variable (see Section 11.7 [VARIABLE
LABELS], page 101), so that a more descriptive label appears in subsequent analyses, and
this can be seen in the ouput from the DESCRIPTIVES command in Results 12.2.

-

Target Variable: = Mumeric Expressions:

- weight/(height/1000)**2
st

| Type & Label... |

L L= 0 L7 e e Jrmerons -]
E] Sex of subject
| - || =< || > || 4 || 5 || 6 |ABS(number)
E] Height in millimeters
ACOS(number)
E] Weight in kilograms | X || = || = || 1 || 2 || 3 |
B it b Cel ANY{number, number[, number]...)
nternal bo...ees Celcius
| + || A || v || 0 || . |ANY(stnng.stnng[.stnng]...)
ARCOS(number)
| x || - || 0 || Delete |ARSIN(number}
| oK | | Paste | | Cancel | | Reset | | Help |

Screenshot 12.2: Using the dialog box to generate a new variable and compute its values

[

The expression which follows the ‘=’ sign can be as complicated as necessary. See
Chapter 7 [Expressions|, page 44, for a precise description of the language accepted. Nor-

2 Since BMI is a quantity with a ratio scale and has units, the term “index” is a misnomer, but that is
what it is called.

Chapter 12: Data transformations 116

mally it is easiest to enter the code directly, however there is a dialog box available if desired.
This is illustrated in Screenshot 12.2. One advantage is that it offers a list of mathematical
functions which can be selected and pasted into the expression.

Descriptive Statistics
o do—o— o o o +
| | NI Mean |Std Dev|Minimum|Maximum|
- s e Fo—mm Fo—mm +om— +
|Weight in kilograms [40| 72.12| 26.70| -55.61 92.1]
|Height in millimeters|40]1677.12| 262.87| 1791 1903|
|Body Mass Index 40| 67.46| 274.08| -21.62]1756.82]
IValid N (listwise) 140]| | | | [
|[Missing N (listwise) | Ol | | | |
o ot +o————— Fo————— +o————— +

Results 12.2: An analysis which includes bmi in its results

12.4 COUNT
COUNT var_name = var. .. (value. ..)
[/var_name = var. .. (value...)]...

Each value takes one of the following forms:
number
string
numl THRU num?2
MISSING
SYSMIS
where numl is a numeric expression or the words LO or LOWEST
and num?2 is a numeric expression or HI or HIGHEST.

COUNT creates or replaces a numeric target variable that counts the occurrence of a
criterion value or set of values over one or more test variables for each case.

The target variable values are always nonnegative integers. They are never missing.
The target variable is assigned an F8.2 output format. See Section 6.7.4 [Input and Output
Formats], page 32. Any variables, including string variables, may be test variables.

User-missing values of test variables are treated just like any other values. They are not
treated as system-missing values. User-missing values that are criterion values or inside
ranges of criterion values are counted as any other values. However (for numeric variables),
keyword MISSING may be used to refer to all system- and user-missing values.

COUNT target variables are assigned values in the order specified. In the command COUNT
A=A B(1) /B=4 B(2) ., the following actions occur:

— The number of occurrences of 1 between A and B is counted.
— A is assigned this value.
— The number of occurrences of 1 between B and the new value of A is counted.
— B is assigned this value.
Despite this ordering, all COUNT criterion variables must exist before the procedure is

executed—they may not be created as target variables earlier in the command! Break such
a command into two separate commands.

Chapter 12: Data transformations 117

12.4.1 Count Examples

In the survey results in dataset hotel.sav a manager wishes to know how many respondents
answered with low valued answers to questions v1, v2 and v3. This can be found using the
code in Example 12.4. Specifically, this code creates a new variable, and populates it with
the number of values in v1-v2 which are 2 or lower.

get file="hotel.sav".
count low_counts = vl v2 v3 (low thru 2).

list /variables vl v2 v3 low_counts.

Example 12.4: Counting low values to responses vl, v2 and v3

In Example 12.4 the COUNT transformation creates a new variable, low_counts and its
values are shown using the LIST command.

If using the graphic user interface, a two step process must be used to set up the COUNT
transformation. The first dialog box (Screenshot 12.3) provides for the variables to be
chosen. Then, one must click on the button marked “Define Values...” to reveal the dialog
box for selecting the values to count.

Target Variable: Target Label:

low_count

Mumeric Variables:

My concerns ...ient manner

vl
i1l There was to...n the rooms R
v2
V3
Define Values...
OK Paste Cancel I Reset I Help

Screenshot 12.3: The variables vl1, v2 and v3 selected, ready to define values to count

In this dialog box, you must select the values you wish to count — in this case all values
up to and including 2 — as shown in Screenshot 12.4 and click “Add”. As many ranges or
may be added as you desire. When all desired ranges have been added click “Continue”.

Chapter 12: Data transformations 118

O"ufalue: Values to Count:—
‘ Add
System Missing
System or User Missing
Range:
through Edit

@Range. LOWEST thru value

2]
(ORange, value thru HIGHEST
Remove
Continue Cancel Help

Screenshot 12.4: Count “Define Values” dialog with ‘lowest thru 2’ selected

In Result 12.2 we can see the values of low_counts after the COUNT transformation has
completed. The first value is 1, because there is only one variable amoung v1, v2 and 3
which has a value of 2 or less. The second value is 2, because both vl and v2 are 2 or less.

Chapter 12: Data transformations 119

Data List
B S S S +

|vilv2|v3|low_counts]|

B e +
| 41 2| 3| 1.00]
| 11 1] 4l 2.00]|
| 41 2| 2| 2.00]|
| 31 1] 3| 1.00]
| 51 31 1] 1.00]
| 21 2| 5l 2.00]|
| 31 2| 4l 1.00|
| 11 4l 5l 1.00]|
| 31 21 3| 1.00]
| 21 51 4l 1.00]
| 41 2| 2| 2.00]|
| 21 1] 4l 2.00]|
| 11 2| 5l 2.00]|
| 21 3| 3] 1.00]
| 41 1] 11 2.00]|
| 11 1| 5l 2.00]|
| 11 51 5l 1.00]
B s S +

Result 12.2: The values of v1, v2, v3 and low_counts after the COUNT transformation has
run

12.5 FLIP

FLIP /VARIABLES=var_list /NEWNAMES=var_name.

FLIP transposes rows and columns in the active dataset. It causes cases to be swapped
with variables, and vice versa.

All variables in the transposed active dataset are numeric. String variables take on the
system-missing value in the transposed file.

N subcommands are required. If specified, the VARIABLES subcommand selects variables
to be transformed into cases, and variables not specified are discarded. If the VARIABLES
subcommand is omitted, all variables are selected for transposition.

The variables specified by NEWNAMES, which must be a string variable, is used to give
names to the variables created by FLIP. Only the first 8 characters of the variable are used.
If NEWNAMES is not specified then the default is a variable named CASE_LBL, if it exists. If
it does not then the variables created by FLIP are named VARO0O through VAR999, then
VAR1000, VAR1001, and so on.

When a NEWNAMES variable is available, the names must be canonicalized before becoming
variable names. Invalid characters are replaced by letter ‘V’ in the first position, or by ‘_’ in
subsequent positions. If the name thus generated is not unique, then numeric extensions are
added, starting with 1, until a unique name is found or there are no remaining possibilities.
If the latter occurs then the FLIP operation aborts.

The resultant dictionary contains a CASE_LBL variable, a string variable of width 8,
which stores the names of the variables in the dictionary before the transposition. Variables
names longer than 8 characters are truncated. If FLIP is called again on this dataset, the
CASE_LBL variable can be passed to the NEWNAMES subcommand to recreate the original
variable names.

Chapter 12: Data transformations 120

FLIP honors N OF CASES (see Section 13.2 [N OF CASES], page 129). It ignores
TEMPORARY (see Section 13.6 [TEMPORARY], page 134), so that “temporary”
transformations become permanent.

12.5.1 Flip Examples

In Example 12.5, data has been entered using DATA LIST (see Section 8.5 [DATA LIST],
page 64) such that the first variable in the dataset is a string variable containing a description
of the other data for the case. Clearly this is not a convenient arrangement for performing
statistical analyses, so it would have been better to think a little more carefully about how
the data should have been arranged. However often the data is provided by some third
party source, and you have no control over the form. Fortunately, we can use FLIP to
exchange the variables and cases in the active dataset.

e)
data list notable list /heading (al6) vl v2 v3 v4 v5 v6
begin data.
date-of-birth 1970 1989 2001 1966 1976 1982
sex 100101
score 10 10 9 3 8 9
end data.

echo ’Before FLIP:’.
display variables.
list.

flip /variables = all /newnames = heading.
echo ’After FLIP:’.

display variables.
list.

Example 12.5: Using FLIP to exchange variables and cases in a dataset

As you can see in Results 12.3 before the FLIP command has run there are seven variables
(six containing data and one for the heading) and three cases. Afterwards there are four
variables (one per case, plus the CASE_LBL variable) and six cases. You can delete the
CASE_LBL variable (see Section 11.6 [DELETE VARIABLES], page 101) if you don’t need
it.

Chapter 12: Data transformations

Results 12.3: The results of using FLIP to exchange variables and cases in a dataset

Before FLIP:

Variables

+

+

dom o +

| Name |Position|Print Format|Write Format|
+——= + + + —-———+
|heading] 1]A16 |Al6 |
[vi | 2|F8.2 |F8.2 |
v2	3	F8.2	F8.2
v3	4	F8.2	F8.2
v4	5	F8.2	F8.2
v5	61F8.2	F8.2	
v6	71F8.2	F8.2	
- + S +——— -——
Data List
+-—= + + + ———t- —+- —t+————— +
| heading | v1 | wv2 | v3 | v4 | v5 | ve |
+-—= +——— + o +———— +————— +————— +
|date-of-birth|1970.00]/1989.00]/2001.00]1966.00]1976.00]1982.00|
| sex | 1.00] .00]| .00| 1.00] .00| 1.00]
| score | 10.00| 10.00] 9.00| 3.00] 8.00] 9.00|
+-—= + + + B Fo————— Fo————— +
After FLIP:
Variables
+-—= - + B Fomm e +
| Name |Position|Print Format|Write Format|
+-—= + e o +
| CASE_LBL | 1/A8 | A8 | |
|date_of _birthl 2|F8.2 |F8.2 |
| sex | 3|F8.2 |F8.2 |
| score | 4|F8.2 |F8.2 |
+——= + B Fom +
Data List
Fmm———— B B +

|CASE_LBL|date_of_birth| sex|scorel

t——

-—- - +

|vi
|v2
|v3
|v4
|vb
|v6
+___

+ —— — — — — +

1970.00(1.00110.00]
1989.00| .00/10.00]|
2001.00] .00| 9.00]|
1966.0011.00| 3.00]
1976.00| .00| 8.00]|
1982.00(1.00] 9.00]
—-—- et +

12.6 IF

IF condition variable=expression.

or

IF condition vector(index)=expression.

121

Chapter 12: Data transformations 122

The IF transformation conditionally assigns the value of a target expression to a target
variable, based on the truth of a test expression.

Specify a boolean-valued expression (see Chapter 7 [Expressions|, page 44) to be tested
following the IF keyword. This expression is evaluated for each case. If the value is true,
then the value of the expression is computed and assigned to the specified variable. If the
value is false or missing, nothing is done. Numeric and string variables may be assigned.
When a string expression’s width differs from the target variable’s width, the string result of
the expression is truncated or padded with spaces on the right as necessary. The expression
and variable types must match.

The target variable may be specified as an element of a vector (see Section 11.19 [VEC-
TOR], page 105). In this case, a vector index expression must be specified in parentheses
following the vector name. The index expression must evaluate to a numeric value that,
after rounding down to the nearest integer, is a valid index for the named vector.

Using IF to assign to a variable specified on LEAVE (see Section 11.21 [LEAVE], page 107)
resets the variable’s left state. Therefore, LEAVE should be specified following IF, not before.

When IF is specified following TEMPORARY (see Section 13.6 [TEMPORARY], page 134),
the LAG function may not be used (see [LAG], page 55).

12.7 RECODE

The RECODE command is used to transform existing values into other, user specified values.
The general form is:

RECODE src_vars

(src_value src_value ... = dest_value)
(src_value src_value ... = dest_value)
(src_value src_value ... = dest_value) . ..

[INTO dest_vars].

Following the RECODE keyword itself comes src_vars which is a list of variables whose
values are to be transformed. These variables may be string variables or they may be
numeric. However the list must be homogeneous; you may not mix string variables and
numeric variables in the same recoding.

After the list of source variables, there should be one or more mappings. Each mapping
is enclosed in parentheses, and contains the source values and a destination value separated
by a single ‘=’. The source values are used to specify the values in the dataset which need to
change, and the destination value specifies the new value to which they should be changed.
Each src_value may take one of the following forms:

number If the source variables are numeric then src_value may be a literal number.

string If the source variables are string variables then src_value may be a literal string
(like all strings, enclosed in single or double quotes).

numl THRU num?2
This form is valid only when the source variables are numeric. It specifies all
values in the range between numl and num2, including both endpoints of the
range. By convention, numl should be less than num2. Open-ended ranges
may be specified using ‘L0’ or ‘LOWEST’ for numl or ‘HI’ or ‘HIGHEST’ for num?2.

Chapter 12: Data transformations 123

‘MISSING’ The literal keyword ‘MISSING’ matches both system missing and user missing
values. It is valid for both numeric and string variables.

‘SYSMIS’ The literal keyword ‘SYSMIS’ matches system missing values. It is valid for both
numeric variables only.

‘ELSE’ The ‘ELSE’ keyword may be used to match any values which are not matched
by any other src_value appearing in the command. If this keyword appears, it
should be used in the last mapping of the command.

[

After the source variables comes an ‘=" and then the dest_value. The dest_value may
take any of the following forms:

number A literal numeric value to which the source values should be changed. This
implies the destination variable must be numeric.

string A literal string value (enclosed in quotation marks) to which the source values
should be changed. This implies the destination variable must be a string
variable.

‘SYSMIS’® The keyword ‘SYSMIS’ changes the value to the system missing value. This
implies the destination variable must be numeric.

‘COPY’ The special keyword ‘COPY’ means that the source value should not be modified,
but copied directly to the destination value. This is meaningful only if ‘INTO
dest_vars’ is specified.

Mappings are considered from left to right. Therefore, if a value is matched by a src_value
from more than one mapping, the first (leftmost) mapping which matches is considered. Any
subsequent matches are ignored.

The clause ‘INTO dest_vars’ is optional. The behaviour of the command is slightly
different depending on whether it appears or not.

If ‘INTO dest_vars’ does not appear, then values are recoded “in place”. This means
that the recoded values are written back to the source variables from whence the original
values came. In this case, the dest_value for every mapping must imply a value which has
the same type as the src_value. For example, if the source value is a string value, it is not
permissible for dest_value to be ‘SYSMIS’ or another forms which implies a numeric result.
It is also not permissible for dest_value to be longer than the width of the source variable.

The following example two numeric variables x and y are recoded in place. Zero is
recoded to 99, the values 1 to 10 inclusive are unchanged, values 1000 and higher are
recoded to the system-missing value and all other values are changed to 999:

recode x y
(0 = 99)
(1 THRU 10 = COPY)
(1000 THRU HIGHEST = SYSMIS)
(ELSE = 999).

If ‘INTO dest_vars’ is given, then recoded values are written into the variables specified
in dest_vars, which must therefore contain a list of valid variable names. The number of
variables in dest_vars must be the same as the number of variables in src_vars and the
respective order of the variables in dest_vars corresponds to the order of src_vars. That

Chapter 12: Data transformations 124

is to say, the recoded value whose original value came from the nth variable in src_vars
is placed into the nth variable in dest_vars. The source variables are unchanged. If any
mapping implies a string as its destination value, then the respective destination variable
must already exist, or have been declared using STRING or another transformation. Numeric
variables however are automatically created if they don’t already exist. The following
example deals with two source variables, a and b which contain string values. Hence there
are two destination variables vl and v2. Any cases where a or b contain the values ‘apple’,
‘pear’ or ‘pomegranate’ result in v1 or v2 being filled with the string ‘fruit’ whilst cases
with ‘tomato’, ‘lettuce’ or ‘carrot’ result in ‘vegetable’. Any other values produce the
result ‘unknown’:

string v1 (a20).
string v2 (a20).

recode a b
("apple" "pear" "pomegranate" = "fruit")
("tomato" "lettuce" "carrot" = "vegetable")
(ELSE = "unknown")
into v1 v2.

There is one very special mapping, not mentioned above. If the source variable is a string
variable then a mapping may be specified as ‘ (CONVERT)’. This mapping, if it appears must
be the last mapping given and the ‘INTO dest_vars’ clause must also be given and must not
refer to a string variable. ‘CONVERT’ causes a number specified as a string to be converted to
a numeric value. For example it converts the string ‘"3"” into the numeric value 3 (note that
it does not convert ‘three’ into 3). If the string cannot be parsed as a number, then the
system-missing value is assigned instead. In the following example, cases where the value of
x (a string variable) is the empty string, are recoded to 999 and all others are converted to
the numeric equivalent of the input value. The results are placed into the numeric variable
v

recode x
("" = 999)
(convert)
into y.

It is possible to specify multiple recodings on a single command. Introduce additional

recodings with a slash (‘/’) to separate them from the previous recodings:
recode
a (2
/b (1

22) (else = 99)
3) into z

Here we have two recodings. The first affects the source variable a and recodes in-place the
value 2 into 22 and all other values to 99. The second recoding copies the values of b into
the variable z, changing any instances of 1 into 3.

12.8 SORT CASES
SORT CASES BY var_list[({DIA}] [var_List[({DIA}]] ...

SORT CASES sorts the active dataset by the values of one or more variables.

Chapter 12: Data transformations 125

Specify BY and a list of variables to sort by. By default, variables are sorted in ascending
order. To override sort order, specify (D) or (DOWN) after a list of variables to get descending
order, or (A) or (UP) for ascending order. These apply to all the listed variables up until
the preceding (A), (D), (UP) or (DOWN).

The sort algorithms used by SORT CASES are stable. This means records which have
equal values of the sort variables have the same relative order before and after sorting.
Thus, re-sorting an already sorted file does not affect the ordering of cases.

SORT CASES is a procedure. It causes the data to be read.

SORT CASES attempts to sort the entire active dataset in main memory. If workspace is
exhausted, it falls back to a merge sort algorithm which creates numerous temporary files.

SORT CASES may not be specified following TEMPORARY.

12.8.1 Sorting Example

In Example 12.6 the data from the file physiology.sav is sorted by two variables, viz sex
in descending order and temperature in ascending order.

get file=’physiology.sav’.
sort cases by sex (D) temperature(A).
list.

Example 12.6: Sorting cases by two variables.

In Results 12.4 you can see that all the cases with a sex of ‘1’ (female) appear before
those with a sex of ‘0’ (male). This is because they have been sorted in descending order.
Within each sex, the data is sorted on the temperature variable, this time in ascending
order.

Chapter 12: Data transformations 126

Data List
o ———— +————— tmm—————— +

| sex|height |weight | temperature|

+ + } ————
+ + + +

11 1606	56.1] 34.56	
11 179	56.3] 35.15]	
11 1609	55.4]	35.46]
1] 1606] 56.0]	36.06	
11 1607	56.3] 36.26]	
1] 1604	56.0]	36.57
11 1604	56.6]	36.81
11 1606	56.3] 36.88	
11 1604	57.8] 37.32	
11 1598	55.6]	37.37
1] 1607	55.9]	37.84
11 1605	54.5] 37.86	
11 1603	56.1] 38.80]	
11 1604	58.1]	38.85]
11 1605	57.7	38.98
1] 1709] 55.6	39.45	
11 1604	-55.6]	39.72
1] 1601] 55.9]	39.90	
0l 1799] 90.3] 32.59]		
0ol 1799] 89.0] 33.61]		
0l 1799] 90.6	34.04	
0l 1801] 90.5] 34.42]		
ol 1802] 87.7	35.03	
0l 1793	90.1] 35.11]	
ol 1801 92.1] 35.98]		
0ol 1800	89.5] 36.10]	
ol 1645] 92.1	36.68	
0ol 1698] 90.2	36.94	
0l 1800	89.6	37.02
0l 1800	88.9] 37.03]	
0ol 1801	88.9] 37.12	
0l 1799] 90.4]	37.33	
0l 1903] 91.5	37.52	
0ol 1799 90.9] 37.53		
0l 1800] 91.0	37.60	
0l 1799] 90.4	37.68	
ol 1801 91.7] 38.98		
0l 18011 90.9]	39.03	
0ol 1799	89.3	39.77
0l 1884	88.6	39.97
o Fo———— Fo—— +

Results 12.4: The physiology.sav file after sorting.

Note that SORT CASES, like all other transformations, affects only the active file. It does
not have any effect upon the physiology.sav file itself. For that, you would have to rewrite
the file using the SAVE command (see Section 9.6 [SAVE], page 87).

When using the graphic user interface, it is often simpler to perform a sort directly from
the data view. To do this, switch to the data view. Select the column corresponding to the
variable by which you want to sort and click button 1 and then click button 3. A popup
menu will appear like that shown in Screenshot 12.5. Select either “Sort Ascending” or
“Sort Descending” from this menu.

Chapter 12: Data transformations

127

SeX I

~

height i weight i temperatur

Insert Variable

1799 .
Clear variables
1799 Sort Ascending
Sort Descending
lﬂ'[}[} LS L o
1799 90.4 37.68

Screenshot 12.5: Sorting the data on a single variable height

However, sometimes you will want to sort on two or more variables, and that is not
possible using this method. In this case, you must either use some code or the “Sort Cases”
dialog from the Data menu. Screenshot 12.6 shows the dialog box set up to perform a sort
on both sex and height. Note that the order in which you enter the variables is important.
In this case, the data will be first sorted on sex, and then all cases for which sex is the same

will then be sorted by height.

Chapter 12: Data transformations

128

Weight in kilograms

E] Internal b...es Celcius

Sort by:

sex

height

Sort Order

() pescending

OK

Paste

Cancel

Reset

Help

Screenshot 12.6: Sorting the data on two variables sex and height

129

13 Selecting data for analysis

This chapter documents PSPP commands that temporarily or permanently select data
records from the active dataset for analysis.

13.1 FILTER

FILTER BY var_name.
FILTER OFF.

FILTER allows a boolean-valued variable to be used to select cases from the data stream
for processing.

To set up filtering, specify BY and a variable name. Keyword BY is optional but rec-
ommended. Cases which have a zero or system- or user-missing value are excluded from
analysis, but not deleted from the data stream. Cases with other values are analyzed. To
filter based on a different condition, use transformations such as COMPUTE or RECODE to
compute a filter variable of the required form, then specify that variable on FILTER.

FILTER OFF turns off case filtering.

Filtering takes place immediately before cases pass to a procedure for analysis. Only one
filter variable may be active at a time. Normally, case filtering continues until it is explicitly
turned off with FILTER OFF. However, if FILTER is placed after TEMPORARY, it filters only
the next procedure or procedure-like command.

13.2 N OF CASES
N [OF CASES| num_of-cases [ESTIMATED].

N OF CASES limits the number of cases processed by any procedures that follow it in the
command stream. N OF CASES 100, for example, tells PSPP to disregard all cases after the
first 100.

When N OF CASES is specified after TEMPORARY, it affects only the next procedure (see
Section 13.6 [TEMPORARY], page 134). Otherwise, cases beyond the limit specified are
not processed by any later procedure.

If the limit specified on N OF CASES is greater than the number of cases in the active
dataset, it has no effect.

When N OF CASES is used along with SAMPLE or SELECT IF, the case limit is applied to
the cases obtained after sampling or case selection, regardless of how N OF CASES is placed
relative to SAMPLE or SELECT IF in the command file. Thus, the commands N OF CASES 100
and SAMPLE .5 both randomly sample approximately half of the active dataset’s cases, then
select the first 100 of those sampled, regardless of their order in the command file.

N OF CASES with the ESTIMATED keyword gives an estimated number of cases before DATA
LIST or another command to read in data. ESTIMATED never limits the number of cases
processed by procedures. PSPP currently does not make use of case count estimates.

Chapter 13: Selecting data for analysis 130

13.3 SAMPLE
SAMPLE numl [FROM num?2].

SAMPLE randomly samples a proportion of the cases in the active file. Unless it follows
TEMPORARY, it operates as a transformation, permanently removing cases from the active
dataset.

The proportion to sample can be expressed as a single number between 0 and 1. If k is
the number specified, and N is the number of currently-selected cases in the active dataset,
then after SAMPLE k., approximately k*N cases are selected.

The proportion to sample can also be specified in the style SAMPLE m FROM N. With this
style, cases are selected as follows:

1. If N is equal to the number of currently-selected cases in the active dataset, exactly m
cases are selected.

2. If N is greater than the number of currently-selected cases in the active dataset, an
equivalent proportion of cases are selected.

3. If N is less than the number of currently-selected cases in the active, exactly m cases
are selected from the first N cases in the active dataset.

SAMPLE and SELECT IF are performed in the order specified by the syntax file.

SAMPLE is always performed before N OF CASES, regardless of ordering in the syntax file
(see Section 13.2 [N OF CASES], page 129).

The same values for SAMPLE may result in different samples. To obtain the same sample,
use the SET command to set the random number seed to the same value before each SAMPLE.
Different samples may still result when the file is processed on systems with differing en-
dianness or floating-point formats. By default, the random number seed is based on the
system time.

13.4 SELECT IF
SELECT IF expression.

SELECT IF selects cases for analysis based on the value of expression. Cases not selected
are permanently eliminated from the active dataset, unless TEMPORARY is in effect (see
Section 13.6 [TEMPORARY], page 134).

Specify a boolean expression (see Chapter 7 [Expressions|, page 44). If the value of the
expression is true for a particular case, the case is analyzed. If the expression has a false or
missing value, then the case is deleted from the data stream.

Place SELECT IF as early in the command file as possible. Cases that are deleted early
can be processed more efficiently in time and space. Once cases have been deleted from
the active dataset using SELECT IF they cannot be re-instated. If you want to be able to
re-instate cases, then use FILTER (see Section 13.1 [FILTER], page 129) instead.

When SELECT IF is specified following TEMPORARY (see Section 13.6 [TEMPORARY],
page 134), the LAG function may not be used (see [LAG], page 55).

13.4.1 Example Select-If

A shop steward is interested in the salaries of younger personnel in a firm. The file
personnel.sav provides the salaries of all the workers and their dates of birth. The syntax

Chapter 13: Selecting data for analysis 131

in Example 13.1 shows how SELECT IF can be used to limit analysis only to those persons
born after December 31, 1999.

(0
get file = ’personnel.sav’.

echo ’Salaries of all personnel’.
descriptives salary.

echo ’Salaries of personnel born after December 31 1999°.
select if dob > date.dmy (31,12,1999).
descriptives salary.

Example 13.1: Using SELECT IF to select persons born on or after a certain date.

From Result 13.1 one can see that there are 56 persons listed in the dataset, and 17 of
them were born after December 31, 1999.

Salaries of all personnel

Descriptive Statistics

e fommm e — + —
| | N| Mean |Std Dev|Minimum|Maximum|
T — - T — pmmmm }
|Annual salary before tax|56/40028.9718721.171$23,451|$57,044|
|Valid N (listwise) |56 | | I |
IMissing N (listwise) | ol | I I |
- -— ——t e e e o +

Salaries of personnel born after December 31 1999

Descriptive Statistics

+——- -— ———t e O e +
| | N| Mean |Std Dev|Minimum|Maximum|
- -— ————— —_——- + + —-—
| Annual salary before tax|17|31828.59]4454.801%$23,451|$39,504|
|Valid N (listwise) [17] | | | |
IMissing N (listwise) | ol I I I |
= - ———teepm e — + —

Result 13.1: Salary descriptives before and after the SELECT IF transformation.

Note that the personnel.sav file from which the data were read is unaffected. The
transformation affects only the active file.

13.5 SPLIT FILE

SPLIT FILE [{LAYERED, SEPARATE}] BY var_Iist.
SPLIT FILE OFF.

SPLIT FILE allows multiple sets of data present in one data file to be analyzed separately
using single statistical procedure commands.

Specify a list of variable names to analyze multiple sets of data separately. Groups
of adjacent cases having the same values for these variables are analyzed by statistical
procedure commands as one group. An independent analysis is carried out for each group
of cases, and the variable values for the group are printed along with the analysis.

Chapter 13: Selecting data for analysis 132

When a list of variable names is specified, one of the keywords LAYERED or SEPARATE
may also be specified. With LAYERED, which is the default, the separate analyses for each
group are presented together in a single table. With SEPARATE, each analysis is presented
in a separate table. Not all procedures honor the distinction.

Groups are formed only by adjacent cases. To create a split using a variable where
like values are not adjacent in the working file, first sort the data by that variable (see
Section 12.8 [SORT CASES], page 124).

Specify OFF to disable SPLIT FILE and resume analysis of the entire active dataset as a
single group of data.

When SPLIT FILE is specified after TEMPORARY, it affects only the next procedure (see
Section 13.6 [TEMPORARY], page 134).

13.5.1 Example Split

The file horticulture.sav contains data describing the yield of a number of horticultural
specimens which have been subjected to various treatments. If we wanted to investigate
linear statistics of the yeild, one way to do this is using the DESCRIPTIVES (see Section 15.1
[DESCRIPTIVES], page 151). However, it is reasonable to expect the mean to be different
depending on the treatment. So we might want to perform three separate procedures —
one for each treatment.! Example 13.2 shows how this can be done automatically using the
SPLIT FILE command.

get file=’horticulture.sav’.

* Ensure cases are sorted before splitting.
sort cases by treatment.

split file by treatment.

* Run descriptives on the yield variable
descriptives /variable = yield.

Example 13.2: Running DESCRIPTIVES on each value of treatment

In Example 13.3 you can see that the table of descriptive statistics appears 3 times
— once for each value of treatment. In this example ‘N’, the number of observations are
identical in all splits. This is because that experiment was deliberately designed that way.
However in general one can expect a different ‘N’ for each split.

! There are other, possibly better, ways to achieve a similar result using the MEANS or EXAMINE commands.

Chapter 13: Selecting data for analysis 133

Split Values
e TR — +
|Variable | Value |
B fmm—————e +
|treatment|controll
B e +

Descriptive Statistics
e B B R Fo—————— +
| | N| Mean|Std Dev|Minimum|Maximum|
B et e +——+ + B tomm +
|yield 130151.23] 8.28| 37.86|] 68.59]
|[Valid N (listwise) [30]| | |
IMissing N (listwise)| Ol I
o +——t—- + ———t-

+ - —
|
+

Split Values

B e +

|Variable | Value |

B e +

| treatment | conventional |

B i +

Descriptive Statistics
B T e o o e +
| | N| Mean|Std Dev|Minimum|Maximum|
e e ————t —_——— + -+
|yield 130153.57] 8.92|] 36.30| 70.66]
|Valid N (listwise) 30| | | | |
IMissing N (listwise)| Ol | | | |
e +——+ o O O +
Split Values

B T +

|Variable | Value |

o e +

|treatment|traditional|

o ———— e +

Descriptive Statistics

O -— e T S O O +
| | N| Mean|Std Dev|Minimum|Maximum|
o o ———— O e O +
lyield |30156.87] 8.88| 39.08| 75.93|
|Valid N (listwise) 130] | | | |
IMissing N (listwise)| Ol | | | |
== -— +——t + ———t——— e O +

Example 13.3: The results of running DESCRIPTIVES with an active split

Unless TEMPORARY was used, after a split has been defined for a dataset it remains active
until explicitly disabled. In the graphical user interface, the active split variable (if any) is
displayed in the status bar (see Screenshot 13.1. If a dataset is saved to a system file (see
Section 9.6 [SAVE], page 87) whilst a split is active, the split stastus is stored in the file
and will be automatically loaded when that file is loaded.

Chapter 13: Selecting data for analysis 134

Data View Variable View

| || Filteroff || weights off ||Split by treatment|

J

Screenshot 13.1: The status bar indicating that the data set is split using the treatment
variable

13.6 TEMPORARY
TEMPORARY.

TEMPORARY is used to make the effects of transformations following its execution tempo-
rary. These transformations affect only the execution of the next procedure or procedure-like
command. Their effects are not be saved to the active dataset.

The only specification on TEMPORARY is the command name.

TEMPORARY may not appear within a DO IF or LOOP construct. It may appear only once
between procedures and procedure-like commands.

Scratch variables cannot be used following TEMPORARY.

13.6.1 Example Temporary

In Example 13.4 there are two COMPUTE transformation. One of them immediatly follows
a TEMPORARY command, and therefore has effect only for the next procedure, which in this
case is the first DESCRIPTIVES command.

-

data list notable /x 1-2.
begin data.
2
4
10
15
20
24
end data.

compute x=x/2.

temporary.
compute x=x+3.

descriptives x.
descriptives x.

Example 13.4: Running a COMPUTE transformation after TEMPORARY

Chapter 13: Selecting data for analysis 135

The data read by the first DESCRIPTIVES procedure are 4, 5, 8, 10.5, 13, 15. The data
read by the second DESCRIPTIVES procedure are 1, 2, 5, 7.5, 10, 12. This is because the
second COMPUTE transformation has no effect on the second DESCRIPTIVES procedure. You
can check these figures in Result 13.2.

Descriptive Statistics
B TR e e e +
| |IN|Mean|Std Dev|Minimum|Maximum|
- -— e —+————— e +
| x 1619.25] 4.38]| 4] 15| | |
|Valid N (listwise) [6] | | |
|Missing N (listwise)|0]| | |
e s ——— fmm———— 4

Descriptive Statistics
oo e e o +om +
| IN|Mean|Std Dev|Minimum|Maximum|
R e e e e —+-—= Fo——————+
Ix 1616.25] 4.38| 1| 12]
[Valid N (listwise) 6] | | [[
IMissing N (listwise)|Ol| | | | |
B e e e e e Fom +

Result 13.2: The results of running two consecutive DESCRIPTIVES commands after a
temporary transformation

13.7 WEIGHT

WEIGHT BY var_name.
WEIGHT OFF.

WEIGHT assigns cases varying weights, changing the frequency distribution of the active
dataset. Execution of WEIGHT is delayed until data have been read.

If a variable name is specified, WEIGHT causes the values of that variable to be used as
weighting factors for subsequent statistical procedures. Use of keyword BY is optional but
recommended. Weighting variables must be numeric. Scratch variables may not be used
for weighting (see Section 6.7.5 [Scratch Variables|, page 41).

When OFF is specified, subsequent statistical procedures weight all cases equally.

A positive integer weighting factor w on a case yields the same statistical output as would
replicating the case w times. A weighting factor of 0 is treated for statistical purposes as
if the case did not exist in the input. Weighting values need not be integers, but negative
and system-missing values for the weighting variable are interpreted as weighting factors of
0. User-missing values are not treated specially.

When WEIGHT is specified after TEMPORARY, it affects only the next procedure (see
Section 13.6 [TEMPORARY], page 134).

WEIGHT does not cause cases in the active dataset to be replicated in memory.

13.7.1 Example Weights

One could define a dataset containing an inventory of stock items. It would be reasonable
to use a string variable for a description of the item, and a numeric variable for the number
in stock, like in Example 13.5.

Chapter 13: Selecting data for analysis

136

data list notable list /item (al6) quantity (£8.0).
begin data

nuts 345

screws 10034

washers 32012

bolts 876

end data.

echo ’Unweighted frequency table’.
frequencies /variables = item /format=dfreq.

weight by quantity.

echo ’Weighted frequency table’.
frequencies /variables = item /format=dfreq.

Example 13.5: Setting the weight on the variable quantity

One analysis which most surely would be of interest is the relative amounts or each
item in stock. However without setting a weight variable, FREQUENCIES (see Section 15.2
[FREQUENCIES], page 154) does not tell us what we want to know, since there is only
one case for each stock item. Example 13.6 shows the difference between the weighted and

unweighted frequency tables.

Unweighted frequency table

item
+-—- + - +-- e +
| |Frequency|Percent |Valid Percent|Cumulative Percent|
+-—- + e e e e e +
|Valid bolts | 1l 25.0%| 25.0%] 25.0%]
| nuts I 1| 25.0%| 25.0%1 50.0%]
| screws | 1l 25.0%| 25.0%] 75.0%|
| washers | 1] 25.0%| 25.0%] 100. 0%
+-—- + +o——————+ e e +
| Total I 4| 100.0%] | [
B et e e e Fomm +
Weighted frequency table
item

+-—- e e s et e +
| |Frequency|Percent |Valid Percent|Cumulative Percent|
o b——————— b m e o +
|Valid washers]| 32012| 74.0%| 74.0%]| 74.0%!
| screws | 10034| 23.2%] 23.2%1 97.2%|
| bolts | 8761 2.0%1 2.0%1 99.2%1
[nuts | 345 .8%1 8% 100.0%|
B e R Fomm e Fom +
| Total | 43267 100.0%| | |
+==- ————+ e e e +

Example 13.6: Weighted and unweighted frequency tables of items

137

14 Conditional and Looping Constructs

This chapter documents PSPP commands used for conditional execution, looping, and flow
of control.

14.1 BREAK
BREAK.

BREAK terminates execution of the innermost currently executing LOOP construct.

BREAK is allowed only inside LOOP. . .END LOOP. See Section 14.5 [LOOP], page 150, for
more details.

14.2 DEFINE

14.2.1 Overview

DEFINE macro_name ([argument[/argument]. . .])
...body. ..
IENDDEFINE.

Each argument takes the following form:

{!arg-name= | 'POSITIONAL}

['DEFAULT (default)]

[{ NOEXPAND)]

{!TOKENS (count) | 'CHAREND(’token’) | 'ENCLOSE(’ start’ | ’end’) | 'CMDEND}

The following directives may be used within body:

I OFFEXPAND
I ONEXPAND

The following functions may be used within the body:

IBLANKS (count)

I CONCAT (aryg. . .)

'EVAL Carg)

'HEAD (arg)

| INDEX Chaystack , needle)
ILENGTH (arg)

INULL

IQUOTE (arg)

ISUBSTR (arg, start[, count])
I'TAIL Carg)

I'UNQUOTE Carg)

IUPCASE (arg)

The body may also include the following constructs:

ITF (condition) 'THEN true-expansion 'ENDIF
ITF (condition) 'THEN true-expansion 'ELSE false-expansion !'ENDIF

DO fvar = start 'TO end [!BY step]

Chapter 14: Conditional and Looping Constructs 138

14

body
IDOEND
IDO fvar 'IN (expression)
body
IDOEND

ILET /var = expression

.2.2 Introduction

The DEFINE command creates a macro, which is a name for a fragment of PSPP syntax
called the macro’s body. Following the DEFINE command, syntax may call the macro by
name any number of times. Each call substitutes, or expands, the macro’s body in place of
the call, as if the body had been written in its place.

vl

foll

The following syntax defines a macro named !vars that expands to the variable names
v2 v3. The macro’s name begins with ‘!’, which is optional for macro names. The ()
owing the macro name are required:

DEFINE !vars()
vl v2 v3
|ENDDEFINE.

Here are two ways that !vars might be called given the preceding definition:

DESCRIPTIVES !vars.
FREQUENCIES /VARIABLES=!vars.

With macro expansion, the above calls are equivalent to the following:

DESCRIPTIVES v1 v2 v3.
FREQUENCIES /VARIABLES=v1 v2 v3.

The 'vars macro expands to a fixed body. Macros may have more sophisticated contents:

Macro arguments that are substituted into the body whenever they are named. The
values of a macro’s arguments are specified each time it is called. See Section 14.2.4
[Macro Arguments|, page 139.

Macro functions, expanded when the macro is called. See Section 14.2.6 [Macro Func-
tions], page 142.

I'TF constructs, for conditional expansion. See Section 14.2.8 [Macro Conditional Ex-
pansion|, page 146.

Two forms of DO construct, for looping over a numerical range or a collection of tokens.
See Section 14.2.9 [Macro Loops|, page 146.

ILET constructs, for assigning to macro variables. See Section 14.2.10 [Macro Variable
Assignment], page 147.

Many identifiers associated with macros begin with ‘!’, a character not normally allowed

in identifiers. These identifiers are reserved only for use with macros, which helps keep them
from being confused with other kinds of identifiers.

The following sections provide more details on macro syntax and semantics.

Chapter 14: Conditional and Looping Constructs 139

14.2.3 Macro Bodies

As previously shown, a macro body may contain a fragment of a PSPP command (such as
a variable name). A macro body may also contain full PSPP commands. In the latter case,
the macro body should also contain the command terminators.

Most PSPP commands may occur within a macro. The DEFINE command itself is one
exception, because the inner ! ENDDEFINE ends the outer macro definition. For compatibility,
BEGIN DATA. . .END DATA. should not be used within a macro.

The body of a macro may call another macro. The following shows one way that could
work:

DEFINE !commands ()
DESCRIPTIVES !vars.
FREQUENCIES /VARIABLES=!vars.
IENDDEFINE.

* Initially define the ’vars’ macro to analyze vl...v3.
DEFINE !vars() vl v2 v3 !ENDDEFINE.
! commands

* Redefine ’vars’ macro to analyze different variables.
DEFINE !vars() v4 v5 !ENDDEFINE.
! commands

The !commands macro would be easier to use if it took the variables to analyze as an
argument rather than through another macro. The following section shows how to do that.

14.2.4 Macro Arguments

This section explains how to use macro arguments. As an initial example, the following
syntax defines a macro named !analyze that takes all the syntax up to the first command
terminator as an argument:

DEFINE !analyze(!POSITIONAL !CMDEND)
DESCRIPTIVES !1.

FREQUENCIES /VARIABLES=!1.
IENDDEFINE.

When !analyze is called, it expands to a pair of analysis commands with each !1 in the
body replaced by the argument. That is, these calls:

lanalyze v1 v2 v3.
lanalyze v4 vb.

act like the following:

DESCRIPTIVES v1 v2 v3.
FREQUENCIES /VARIABLES=v1 v2 v3.
DESCRIPTIVES v4 v5.

FREQUENCIES /VARIABLES=v4 v5.

Macros may take any number of arguments, described within the parentheses in the
DEFINE command. Arguments come in two varieties based on how their values are specified
when the macro is called:

Chapter 14: Conditional and Looping Constructs 140

e A positional argument has a required value that follows the macro’s name. Use the
IPOSITIONAL keyword to declare a positional argument.

When a macro is called, the positional argument values appear in the same order as
their definitions, before any keyword argument values.

References to a positional argument in a macro body are numbered: !'1 is the first
positional argument, '2 the second, and so on. In addition, !* expands to all of the
positional arguments’ values, separated by spaces.

The following example uses a positional argument:

DEFINE !analyze(!POSITIONAL !CMDEND)
DESCRIPTIVES !1.

FREQUENCIES /VARIABLES=!1.
IENDDEFINE.

lanalyze v1 v2 v3.
lanalyze v4 vb5.

e A keyword argument has a name. In the macro call, its value is specified with the
syntax name=value. The names allow keyword argument values to take any order in
the call.

In declaration and calls, a keyword argument’s name may not begin with ‘!’, but
references to it in the macro body do start with a leading !’.

The following example uses a keyword argument that defaults to ALL if the argument
is not assigned a value:

DEFINE !analyze_kw(vars=!DEFAULT(ALL) !CMDEND)
DESCRIPTIVES !vars.

FREQUENCIES /VARIABLES=!vars.

IENDDEFINE.

lanalyze_kw vars=vl v2 v3. /* Analyze specified variables.
lanalyze_kw. /* Analyze all variables.

If a macro has both positional and keyword arguments, then the positional arguments
must come first in the DEFINE command, and their values also come first in macro calls. A
keyword argument may be omitted by leaving its keyword out of the call, and a positional
argument may be omitted by putting a command terminator where it would appear. (The
latter case also omits any following positional arguments and all keyword arguments, if
there are any.) When an argument is omitted, a default value is used: either the value
specified in !'DEFAULT (value), or an empty value otherwise.

Each argument declaration specifies the form of its value:
I TOKENS (count)
Exactly count tokens, e.g. ! TOKENS (1) for a single token. Each identifier, num-

ber, quoted string, operator, or punctuator is a token. See Section 6.1 [Tokens],
page 25, for a complete definition.

The following variant of !'analyze_kw accepts only a single variable name (or
ALL) as its argument:

DEFINE !analyze_one_var (!POSITIONAL !TOKENS(1))

Chapter 14: Conditional and Looping Constructs 141

DESCRIPTIVES !'1.
FREQUENCIES /VARIABLES=!1.
IENDDEFINE.

lanalyze_one_var vl.

ICHAREND (’ token’)

Any number of tokens up to token, which should be an operator or punctuator
token such as ‘/’ or ‘+’. The token does not become part of the value.

With the following variant of !analyze_kw, the variables must be following by
(/7:

DEFINE !analyze_parens(vars=!CHARNED(’/’))

DESCRIPTIVES !vars.

FREQUENCIES /VARIABLES=!vars.
IENDDEFINE.

lanalyze_parens vars=vl v2 v3/.

IENCLOSE(’start’,’end’)

| CMDEND

Any number of tokens enclosed between start and end, which should each be
operator or punctuator tokens. For example, use 'ENCLOSE(’ (’,’)’) for a
value enclosed within parentheses. (Such a value could never have right paren-
theses inside it, even paired with left parentheses.) The start and end tokens
are not part of the value.

With the following variant of !'analyze_kw, the variables must be specified
within parentheses:

DEFINE !analyze_parens(vars=!ENCLOSE(’(’,?)’))
DESCRIPTIVES !vars.

FREQUENCIES /VARIABLES=!vars.

IENDDEFINE.

lanalyze_parens vars=(vl v2 v3).

Any number of tokens up to the end of the command. This should be used
only for the last positional parameter, since it consumes all of the tokens in the
command calling the macro.

The following variant of !'analyze_kw takes all the variable names up to the
end of the command as its argument:

DEFINE !analyze_kw(vars=!CMDEND)

DESCRIPTIVES !vars.

FREQUENCIES /VARIABLES=!vars.
IENDDEFINE.

lanalyze_kw vars=vl v2 v3.

By default, when an argument’s value contains a macro call, the call is expanded each
time the argument appears in the macro’s body. The !NOEXPAND keyword in an argument

Chapter 14: Conditional and Looping Constructs 142

declaration suppresses this expansion. See Section 14.2.5 [Controlling Macro Expansion],
page 142.

14.2.5 Controlling Macro Expansion

Multiple factors control whether macro calls are expanded in different situations. At the
highest level, SET MEXPAND controls whether macro calls are expanded. By default, it is
enabled. See [SET MEXPAND], page 274, for details.

A macro body may contain macro calls. By default, these are expanded. If a macro
body contains !OFFEXPAND or !ONEXPAND directives, then !OFFEXPAND disables expansion
of macro calls until the following ! ONEXPAND.

A macro argument’s value may contain a macro call. These macro calls are expanded,
unless the argument was declared with the !NOEXPAND keyword.

The argument to a macro function is a special context that does not expand macro calls.
For example, if !vars is the name of a macro, then 'LENGTH(!vars) expands to 5, as does
ILENGTH(!1) if positional argument 1 has value !'vars. To expand macros in these cases,
use the !'EVAL macro function, e.g. !LENGTH(!EVAL(!vars)) or !LENGTH(!EVAL(!1)). See
Section 14.2.6 [Macro Functions|, page 142, for details.

These rules apply to macro calls, not to uses within a macro body of macro functions,
macro arguments, and macro variables created by !D0 or !LET, which are always expanded.

SET MEXPAND may appear within the body of a macro, but it will not affect expansion of
the macro that it appears in. Use !OFFEXPAND and !ONEXPAND instead.

14.2.6 Macro Functions

Macro bodies may manipulate syntax using macro functions. Macro functions accept tokens
as arguments and expand to sequences of characters.

The arguments to macro functions have a restricted form. They may only be a single
token (such as an identifier or a string), a macro argument, or a call to a macro function.
Thus, the following are valid macro arguments:

X 5.0 X 1 "5 + 6" ICONCAT(x,y)
and the following are not:
Xy 5+6

Macro functions expand to sequences of characters. When these character strings are
processed further as character strings, e.g. with !'LENGTH, any character string is valid.
When they are interpreted as PSPP syntax, e.g. when the expansion becomes part of a
command, they need to be valid for that purpose. For example, !UNQUOTE("It’s") will
yield an error if the expansion It’s becomes part of a PSPP command, because it contains
unbalanced single quotes, but !LENGTH(!UNQUOTE("It’s")) expands to 4.

The following macro functions are available. Each function’s documentation includes
examples in the form call — expansion.

IBLANKS (count) [Macro Function]
Expands to count unquoted spaces, where count is a nonnegative integer. Outside
quotes, any positive number of spaces are equivalent; for a quoted string of spaces,
use !'QUOTE (!'BLANKS (count)).

Chapter 14: Conditional and Looping Constructs 143

4

In the examples below, ‘_’ stands in for a space to make the results visible.

I BLANKS (0) — empty
IBLANKS (1) —
IBLANKS (2) o
IQUOTE (! BLANKS(5)) — ’

ICONCAT (arg...) [Macro Function]
Expands to the concatenation of all of the arguments. Before concatenation, each
quoted string argument is unquoted, as if 'UNQUOTE were applied. This allows for
“token pasting”, combining two (or more) tokens into a single one:

| CONCAT (x, y) — Xy
ICONCAT(’x*, ’y?) = Xy
ICONCAT (12, 34) — 1234
ICONCAT (!NULL, 123) — 123

ICONCAT is often used for constructing a series of similar variable names from a prefix
followed by a number and perhaps a suffix. For example:

ICONCAT (x, 0) — x0

ICONCAT(x, 0, y) — x0y
An identifier token must begin with a letter (or ‘#’ or ‘@’), which means that attempt-
ing to use a number as the first part of an identifier will produce a pair of distinct
tokens rather than a single one. For example:

ICONCAT (0, x) — 0 x
ICONCAT(0, x, y) — 0 xy

IEVAL (arg) [Macro Function]
Expands macro calls in arg. This is especially useful if arg is the name of a macro or a
macro argument that expands to one, because arguments to macro functions are not
expanded by default (see Section 14.2.5 [Controlling Macro Expansion], page 142).

The following examples assume that !vars is a macro that expands to a b c:

lvars — abc
IQUOTE(!vars) — ’lvars’
IEVAL(!vars) = abc
IQUOTE(!'EVAL(!vars)) — ’abc’
These examples additionally assume that argument !'1 has value !vars:
" — abc
IQUOTE(!1) — ’lvars’
IEVAL(!1) — abc
IQUOTE(!EVAL(!1)) — ’abc’
'HEAD (arg) [Macro Function]
I'TAIL (arg) [Macro Function]

IHEAD expands to just the first token in an unquoted version of arg, and ! TAIL to all
the tokens after the first.

IHEAD(’a b c¢’) — a

IHEAD(’a’) — a

Chapter 14: Conditional and Looping Constructs 144

IHEAD (! NULL) — empty
IHEAD(’?) — empty
ITAIL(’a b c¢?) — b c
ITAIL(’a’) — empty
I'TAIL(!NULL) — empty
ITAIL(’?) — empty
I INDEX (haystack, needle) [Macro Function]

Looks for needle in haystack. If it is present, expands to the 1-based index of its first
occurrence; if not, expands to 0.

I INDEX (banana, an)

| INDEX (banana, nan)

I INDEX (banana, apple)
IINDEX ("banana", nan)
IINDEX("banana", "nan") 0

I INDEX (!UNQUOTE("banana"), !'UNQUOTE("nan")) +— 3

11111
S O W N

ILENGTH (arg) [Macro Function]
Expands to a number token representing the number of characters in arg.

LENGTH(123)
'LENGTH(123.00)

ILENGTH(123)
ILENGTH("123")

I LENGTH (xyzzy)
'LENGTH("xyzzy")
ILENGTH("xy""zzy")
ILENGTH(!UNQUOTE ("xyzzy"))
'LENGTH(!'UNQUOTE("xy""zzy"))
ILENGTH(!'1)

ILENGTH('1)

'LENGTH(!NULL)

if'1isa b ¢
if 11 is empty

1111131111111

INULL [Macro Function]
Expands to an empty character sequence.

INULL
| QUOTE (! NULL)

empty

)

11

IQUOTE (arg) [Macro Function]
'UNQUOTE (arg) [Macro Function]
The 'QUOTE function expands to its argument surrounded by apostrophes, doubling
any apostrophes inside the argument to make sure that it is valid PSPP syntax for a
string. If the argument was already a quoted string, ! QUOTE expands to it unchanged.

Given a quoted string argument, the 'UNQUOTED function expands to the string’s con-
tents, with the quotes removed and any doubled quote marks reduced to singletons. If
the argument was not a quoted string, 'UNQUOTE expands to the argument unchanged.

IQUOTE (123.0) — 2123.0°

Chapter 14: Conditional and Looping Constructs 145

IQUOTE(123) — 2123’

IQUOTE(’a b c’) — ’a b c’

IQUOTE("a b c") — "a b c"

IQUOTE(!1) — ’a ’’b’’ ¢’ if 'lisa ’b’ ¢

I'UNQUOTE (123.0) — 123.0

I'UNQUOTE(123) — 123

IUNQUOTE(’a b ¢’) — abc

IUNQUOTE("a b c") — abc

IUNQUOTE(!1) — a ’b’ cifl!lisa b’ ¢

IQUOTE (!UNQUOTE(123.0)) — ’123.0°

IQUOTE (!UNQUOTE(123)) — 123°

IQUOTE(!UNQUOTE(’a b ¢’)) — ’abc’

IQUOTE(!UNQUOTE("a b c")) — ’abc’

IQUOTE (! UNQUOTE(!'1)) — ’a ’’b’’ ¢’ if 'l1isa ’b’ ¢
ISUBSTR (arg, start[, count)]) [Macro Function]

Expands to a substring of arg starting from 1-based position start. If count is given,
it limits the number of characters in the expansion; if it is omitted, then the expansion
extends to the end of arg.

ISUBSTR (banana, 3) — nana
ISUBSTR (banana, 3, 3) — nan
ISUBSTR("banana", 1, 3) — error ("ba is not a valid token)
ISUBSTR (! UNQUOTE("banana"), 3) + nana
ISUBSTR("banana", 3, 3) — ana
ISUBSTR (banana, 3, 0) — empty
ISUBSTR (banana, 3, 10) — nana
ISUBSTR (banana, 10, 3) — empty
IUPCASE (arg) [Macro Function]
Expands to an unquoted version of arg with all letters converted to uppercase.
IUPCASE (freckle) — FRECKLE
IUPCASE (’freckle’) — FRECKLE
IUPCASE(’a b c¢’) — ABC
IUPCASE(’A B C?) — ABC

14.2.7 Macro Expressions

Macro expressions are used in conditional expansion and loops, which are described in the
following sections. A macro expression may use the following operators, listed in descending
order of operator precedence:

O Parentheses override the default operator precedence.

IEQ 'NE !GT ILT !GE !'LE = "= <> > < >=<=
Relational operators compare their operands and yield a Boolean result, either
‘0’ for false or ‘1’ for true.

Chapter 14: Conditional and Looping Constructs 146

These operators always compare their operands as strings. This can be sur-
prising when the strings are numbers because, e.g., 1 < 1.0 and 10 < 2 both
evaluate to ‘1’ (true).

Comparisons are case sensitive, so that a = A evaluates to ‘0’ (false).

INOT ~

TAND &

I0R | Logical operators interpret their operands as Boolean values, where quoted or
unquoted ‘0’ is false and anything else is true, and yield a Boolean result, either
‘0’ for false or ‘1’ for true.

Macro expressions do not include any arithmetic operators.

An operand in an expression may be a single token (including a macro argument name)
or a macro function invocation. Either way, the expression evaluator unquotes the operand,
so that 1 = 1’ is true.

14.2.8 Macro Conditional Expansion

The !IF construct may be used inside a macro body to allow for conditional expansion. It
takes the following forms:

ITF (expression) !THEN true-expansion !IFEND
IIF (expression) !THEN true-expansion !'ELSE false-expansion !IFEND

When expression evaluates to true, the macro processor expands true-expansion; other-
wise, it expands false-expansion, if it is present. The macro processor considers quoted or
unquoted ‘0’ to be false, and anything else to be true.

14.2.9 Macro Loops

The body of a macro may include two forms of loops: loops over numerical ranges and loops
over tokens. Both forms expand a loop body multiple times, each time setting a named
loop variable to a different value. The loop body typically expands the loop variable at
least once.

The MITERATE setting (see [SET MITERATE], page 274) limits the number of itera-
tions in a loop. This is a safety measure to ensure that macro expansion terminates. PSPP
issues a warning when the MITERATE limit is exceeded.

Loops Over Ranges

DO !var = start !TO end [!BY step]
body
IDOEND

A loop over a numerical range has the form shown above. start, end, and step (if
included) must be expressions with numeric values. The macro processor accepts both
integers and real numbers. The macro processor expands body for each numeric value from
start to end, inclusive.

The default value for step is 1. If step is positive and first > last, or if step is negative
and first < last, then the macro processor doesn’t expand the body at all. step may not be
Z€ero.

Chapter 14: Conditional and Looping Constructs 147

Loops Over Tokens

IDO !var 'IN (expression)
body
IDOEND

A loop over tokens takes the form shown above. The macro processor evaluates expres-
sion and expands body once per token in the result, substituting the token for !var each
time it appears.

14.2.10 Macro Variable Assignment

The 'LET construct evaluates an expression and assigns the result to a macro variable. It
may create a new macro variable or change the value of one created by a previous !LET or
IDO, but it may not change the value of a macro argument. 'LET has the following form:

ILET !var = expression

If expression is more than one token, it must be enclosed in parentheses.

14.2.11 Macro Settings

Some macro behavior is controlled through the SET command (see Section 17.20 [SET],
page 267). This section describes these settings.

Any SET command that changes these settings within a macro body only takes effect
following the macro. This is because PSPP expands a macro’s entire body at once, so that
the SET command inside the body only executes afterwards.

The MEXPAND setting (see [SET MEXPAND], page 274) controls whether macros will
be expanded at all. By default, macro expansion is on. To avoid expansion of macros called
within a macro body, use ! OFFEXPAND and ! ONEXPAND (see Section 14.2.5 [Controlling Macro
Expansion], page 142).

When MPRINT (see [SET MPRINT], page 274) is turned on, PSPP outputs an expan-
sion of each macro called. This feature can be useful for debugging macro definitions. For
reading the expanded version, note that macro expansion removes comments and standard-
izes white space.

MNEST (see [SET MNEST], page 274) limits the depth of expansion of macro calls,
that is, the nesting level of macro expansion. The default is 50. This is mainly useful to
avoid infinite expansion in the case of a macro that calls itself.

MITERATE (see [SET MITERATE], page 274) limits the number of iterations in a !'DO
construct. The default is 1000.

14.2.12 Additional Notes
14.2.12.1 Calling Macros from Macros

If the body of macro A includes a call to macro B, the call can use macro arguments
(including !*) and macro variables as part of arguments to B. For ! TOKENS arguments, the
argument or variable name counts as one token regardless of the number that it expands
into; for 'CHAREND and !'ENCLOSE arguments, the delimiters come only from the call, not
the expansions; and ! CMDEND ends at the calling command, not any end of command within
an argument or variable.

Chapter 14: Conditional and Looping Constructs 148

Macro functions are not supported as part of the arguments in a macro call. To get the
same effect, use 'LET to define a macro variable, then pass the macro variable to the macro.

When macro A calls macro B, the order of their DEFINE commands doesn’t matter, as
long as macro B has been defined when A is called.

14.2.12.2 Command Terminators

Macros and command terminators require care. Macros honor the syntax differences be-
tween interactive and batch syntax (see Section 6.3 [Syntax Variants|, page 27), which
means that the interpretation of a macro can vary depending on the syntax mode in use.
We assume here that interactive mode is in use, in which ‘.” at the end of a line is the
primary way to end a command.

The DEFINE command needs to end with ‘.’ following the 'ENDDEFINE. The macro body
may contain ‘.’ if it is intended to expand to whole commands, but using ‘.’ within a macro
body that expands to just syntax fragments (such as a list of variables) will cause syntax
errors.

Macro directives such as !IF and !'DO do not end with .’ .

14.2.12.3 Expansion Contexts

Macros do not expand within comments, whether introduced within a line by /* or as a
separate COMMENT or ‘*’ commands (see Section 17.4 [COMMENT], page 262). (SPSS
does expand macros in COMMENT and ‘x’.)

Macros do not expand within quoted strings.

Macros are expanded in the TITLE and SUBTITLE commands as long as their arguments
are not quoted strings.

14.2.12.4 PRESERVE and RESTORE

Some macro bodies might use the SET command to change certain settings. When this
is the case, consider using the PRESERVE and RESTORE commands to save and then
restore these settings. See Section 17.19 [PRESERVE and RESTORE], page 267.

14.3 DO IF
DO IF condition.

[ELSE IF condition.

[ELSE.
END IF.
DO IF allows one of several sets of transformations to be executed, depending on user-
specified conditions.

If the specified boolean expression evaluates as true, then the block of code following
DO IF is executed. If it evaluates as missing, then none of the code blocks is executed. If
it is false, then the boolean expression on the first ELSE IF, if present, is tested in turn,

Chapter 14: Conditional and Looping Constructs 149

with the same rules applied. If all expressions evaluate to false, then the ELSE code block
is executed, if it is present.

When DO IF or ELSE IF is specified following TEMPORARY (see Section 13.6 [TEMPO-
RARY], page 134), the LAG function may not be used (see [LAG], page 55).

14.4 DO REPEAT
DO REPEAT dummy_name=expansion. . ..

END REPEAT [PRINT].

expansion takes one of the following forms:
var_list
num_or_range. . .
‘string’. . .

ALL

num_or_range takes one of the following forms:
number
numl TO num?2

DO REPEAT repeats a block of code, textually substituting different variables, numbers,
or strings into the block with each repetition.

Specify a dummy variable name followed by an equals sign (‘=") and the list of replace-
ments. Replacements can be a list of existing or new variables, numbers, strings, or ALL to
specify all existing variables. When numbers are specified, runs of increasing integers may
be indicated as numl TO num2, so that ‘1 TO 5’ is short for ‘1 2 3 4 5.

Multiple dummy variables can be specified. Each variable must have the same number
of replacements.

The code within DO REPEAT is repeated as many times as there are replacements for each
variable. The first time, the first value for each dummy variable is substituted; the second
time, the second value for each dummy variable is substituted; and so on.

Dummy variable substitutions work like macros. They take place anywhere in a line
that the dummy variable name occurs. This includes command and subcommand names,
so command and subcommand names that appear in the code block should not be used
as dummy variable identifiers. Dummy variable substitutions do not occur inside quoted
strings, comments, unquoted strings (such as the text on the TITLE or DOCUMENT command),
or inside BEGIN DATA. . .END DATA.

Substitution occurs only on whole words, so that, for example, a dummy variable PRINT
would not be substituted into the word PRINTOUT.

New variable names used as replacements are not automatically created as variables, but
only if used in the code block in a context that would create them, e.g. on a NUMERIC or
STRING command or on the left side of a COMPUTE assignment.

Any command may appear within DO REPEAT, including nested DO REPEAT commands.
If INCLUDE or INSERT appears within DO REPEAT, the substitutions do not apply to the
included file.

Chapter 14: Conditional and Looping Constructs 150

If PRINT is specified on END REPEAT, the commands after substitutions are made should be
printed to the listing file, prefixed by a plus sign (‘+’). This feature is not yet implemented.

14.5 LOOP
LOOP [index_var=start TO end [BY incr|| [IF condition].

END LOOP [IF condition].
LOQOP iterates a group of commands. A number of termination options are offered.

Specify index_var to make that variable count from one value to another by a particular
increment. index_var must be a pre-existing numeric variable. start, end, and incr are
numeric expressions (see Chapter 7 [Expressions|, page 44.)

During the first iteration, index_var is set to the value of start. During each successive
iteration, index_var is increased by the value of incr. If end > start, then the loop terminates
when index_var > end; otherwise it terminates when index_var < end. If incr is not specified
then it defaults to +1 or -1 as appropriate.

If end > start and incr < 0, or if end < start and incr > 0, then the loop is never executed.
index_var is nevertheless set to the value of start.

Modifying index_var within the loop is allowed, but it has no effect on the value of
index_var in the next iteration.

Specify a boolean expression for the condition on LOOP to cause the loop to be executed
only if the condition is true. If the condition is false or missing before the loop contents are
executed the first time, the loop contents are not executed at all.

If index and condition clauses are both present on LOOP, the index variable is always set
before the condition is evaluated. Thus, a condition that makes use of the index variable
will always see the index value to be used in the next execution of the body.

Specify a boolean expression for the condition on END LOOP to cause the loop to terminate
if the condition is true after the enclosed code block is executed. The condition is evaluated
at the end of the loop, not at the beginning, so that the body of a loop with only a condition
on END LOOP will always execute at least once.

If the index clause is not present, then the global MXLOOPS setting, which defaults to 40,
limits the number of iterations (see [SET MXLOOPS], page 270).

BREAK also terminates LOOP execution (see Section 14.1 [BREAK], page 137).

Loop index variables are by default reset to system-missing from one case to another,
not left, unless a scratch variable is used as index. When loops are nested, this is usu-

ally undesired behavior, which can be corrected with LEAVE (see Section 11.21 [LEAVE],
page 107) or by using a scratch variable as the loop index.

When LOOP or END LOOP is specified following TEMPORARY (see Section 13.6 [TEMPO-
RARY], page 134), the LAG function may not be used (see [LAG], page 55).

151

15 Statistics
This chapter documents the statistical procedures that PSPP supports so far.

15.1 DESCRIPTIVES

DESCRIPTIVES
/VARIABLES=var_list
/MISSING={VARIABLE,LISTWISE} {INCLUDE,NOINCLUDE}
/FORMAT={LABELS,NOLABELS} {NOINDEX,INDEX} {LINE,SERIAL}
/SAVE
/STATISTICS={ALL,MEAN,SEMEAN,STDDEV,VARIANCE,KURTOSIS,
SKEWNESS,RANGE, MINIMUM,MAXIMUM,SUM,DEFAULT,
SESKEWNESS,SEKURTOSIS}
/SORT={NONE,MEAN,SEMEAN,STDDEV,VARIANCE,KURTOSIS,SKEWNESS,
RANGE,MINIMUM,MAXIMUM,SUM,SESKEWNESS,SEKURTOSIS,NAME}
{A,D}
The DESCRIPTIVES procedure reads the active dataset and outputs linear descriptive
statistics requested by the user. In addition, it can optionally compute Z-scores.

The VARIABLES subcommand, which is required, specifies the list of variables to be
analyzed. Keyword VARIABLES is optional.

All other subcommands are optional:

The MISSING subcommand determines the handling of missing variables. If INCLUDE is
set, then user-missing values are included in the calculations. If NOINCLUDE is set, which is
the default, user-missing values are excluded. If VARIABLE is set, then missing values are
excluded on a variable by variable basis; if LISTWISE is set, then the entire case is excluded
whenever any value in that case has a system-missing or, if INCLUDE is set, user-missing
value.

The FORMAT subcommand has no effect. It is accepted for backward compatibility.

The SAVE subcommand causes DESCRIPTIVES to calculate Z scores for all the specified
variables. The Z scores are saved to new variables. Variable names are generated by
trying first the original variable name with Z prepended and truncated to a maximum of 8
characters, then the names ZSC000 through ZSC999, STDZ00 through STDZ09, ZZZ700
through 277709, ZQZQ00 through ZQZQ09, in that sequence. In addition, Z score variable
names can be specified explicitly on VARIABLES in the variable list by enclosing them in
parentheses after each variable. When Z scores are calculated, PSPP ignores TEMPORARY,
treating temporary transformations as permanent.

The STATISTICS subcommand specifies the statistics to be displayed:
ALL All of the statistics below.
MEAN Arithmetic mean.
SEMEAN Standard error of the mean.
STDDEV Standard deviation.
VARIANCE Variance.

Chapter 15: Statistics 152

KURTOSIS Kurtosis and standard error of the kurtosis.

SKEWNESS Skewness and standard error of the skewness.

RANGE Range.

MINIMUM Minimum value.

MAXIMUM Maximum value.

SUM Sum.

DEFAULT Mean, standard deviation of the mean, minimum, maximum.

SEKURTOSIS
Standard error of the kurtosis.

SESKEWNESS
Standard error of the skewness.

The SORT subcommand specifies how the statistics should be sorted. Most of the possi-
ble values should be self-explanatory. NAME causes the statistics to be sorted by name. By
default, the statistics are listed in the order that they are specified on the VARIABLES sub-
command. The A and D settings request an ascending or descending sort order, respectively.

15.1.1 Descriptives Example

The physiology.sav file contains various physiological data for a sample of persons. Run-
ning the DESCRIPTIVES command on the variables height and temperature with the default
options allows one to see simple linear statistics for these two variables. In Example 15.1,
these variables are specfied on the VARIABLES subcommand and the SAVE option has been
used, to request that Z scores be calculated.

After the command has completed, this example runs DESCRIPTIVES again, this time on
the zheight and ztemperature variables, which are the two normalized (Z-score) variables
generated by the first DESCRIPTIVES command.

(N
get file=’physiology.sav’.
descriptives
/variables = height temperature
/save.
descriptives
/variables = zheight ztemperature.
- J

Example 15.1: Running two DESCRIPTIVES commands, one with the SAVE subcommand

Chapter 15: Statistics

153

E] Sex of subject

Weight in kilograms

Options:

[] include user-missing data in analysis

[) Exclude entire case if any selected variable is missing

Variables:] .
height : ox :
temperature

Paste

Statistics:

B Mean
B Standard d Cancel
B Minimum
Reset
Help

[+ save Z-scores of selected variables as new variables

N

Screenshot 15.1: The Descriptives dialog box with two variables and Z-Scores option

selected

In Result 15.1, we can see that there are 40 valid data for each of the variables and
no missing values. The mean average of the height and temperature is 16677.12 and 37.02
respectively. The descriptive statistics for temperature seem reasonable. However there is
a very high standard deviation for height and a suspiciously low minimum. This is due to
a data entry error in the data (see Section 5.2.1 [Identifying incorrect data], page 15).

In the second Descriptive Statistics command, one can see that the mean and standard
deviation of both Z score variables is 0 and 1 respectively. All Z score statistics should have
these properties since they are normalized versions of the original scores.

Chapter 15: Statistics 154

Mapping of Variables to Z-scores

o e +
| Source | Target |
e B B +
|Height in millimeters | Zheight |
| Internal body temperature in degrees Celcius|Ztemperaturel
o e +

+-—= -—- -—- ———tm—tm— - o o o +
| | NI Mean |Std Dev|Minimum|Maximum|
+-—- o oo o tom— o +
|Height in millimeters 14011677.12| 262.87]| 1791 1903
|Internal body temperature in degrees [40] 37.02| 1.82] 32.59| 39.97|
|Celcius (. | [[[
[Valid N (listwise) 1401 | [[I
IMissing N (listwise) | ol | | | |
o= -—- -—- e Fmmmmm o o ettt +

Descriptive Statistics

e et L +——+ ¢
| (. | Std | |

| | NI Mean | Dev [Minimum|Maximum|
+-—- e +——+ it ST o +
|Z-score of Height in millimeters [40[1.93E-015|] 1.00| -5.70] .86

|Z-score of Internal body temperature in [40|1.37E-015| 1.00| -2.44]| 1.62]
|degrees Celcius (. I | | I
[Valid N (listwise) [40] [[I
IMissing N (listwise) | ol I | |
+-—= -— -— +——+ ——t—————— o o +

Result 15.1: Descriptives statistics including two normalized variables (Z-scores)

15.2 FREQUENCIES

FREQUENCIES
/VARIABLES=var_list
JFORMAT={TABLE,NOTABLE,LIMIT (limit)}

{AVALUE,DVALUE,AFREQ,DFREQ}
/MISSING={EXCLUDE,INCLUDE}

/STATISTICS={DEFAULT ,MEAN,SEMEAN,MEDIAN,MODE,STDDEV, VARIANCE,
KURTOSIS,SKEWNESS, RANGE, MINIMUM,MAXIMUM,SUM,
SESKEWNESS,SEKURTOSIS,ALL,NONE}

/NTILES=ntiles

/PERCENTILES=percent. . .

JHISTOGRAM=|MINIMUM (x_min)] [MAXIMUM (x_max)]
{FREQ[(y.max)],PERCENT[(y_max)]}] [{NONORMAL,NORMAL}]

JPIECHART=[MINIMUM (x_min)] [MAXIMUM (x_max)]
[{FREQ,PERCENT}] [{NOMISSING ,MISSING}|

/BARCHART=|MINIMUM (x_min)] [MAXIMUM(x_max)]
[{FREQ,PERCENTY}]

JORDER={ANALYSIS,VARIABLE}

Chapter 15: Statistics 155

(These options are not currently implemented.)
/HBAR=. ..
/GROUPED=. ..

The FREQUENCIES procedure outputs frequency tables for specified variables.
FREQUENCIES can also calculate and display descriptive statistics (including median and
mode) and percentiles, and various graphical representations of the frequency distribution.

The VARIABLES subcommand is the only required subcommand. Specify the variables
to be analyzed.

The FORMAT subcommand controls the output format. It has several possible settings:

TABLE, the default, causes a frequency table to be output for every variable specified.
NOTABLE prevents them from being output. LIMIT with a numeric argument causes
them to be output except when there are more than the specified number of values in
the table.

Normally frequency tables are sorted in ascending order by value. This is AVALUE.
DVALUE tables are sorted in descending order by value. AFREQ and DFREQ tables are
sorted in ascending and descending order, respectively, by frequency count.

The MISSING subcommand controls the handling of user-missing values. When EXCLUDE,
the default, is set, user-missing values are not included in frequency tables or statistics.
When INCLUDE is set, user-missing are included. System-missing values are never included
in statistics, but are listed in frequency tables.

The available STATISTICS are the same as available in DESCRIPTIVES (see Section 15.1
[DESCRIPTIVES], page 151), with the addition of MEDIAN, the data’s median value, and
MODE, the mode. (If there are multiple modes, the smallest value is reported.) By default,
the mean, standard deviation of the mean, minimum, and maximum are reported for each
variable.

PERCENTILES causes the specified percentiles to be reported. The percentiles should be
presented at a list of numbers between 0 and 100 inclusive. The NTILES subcommand causes
the percentiles to be reported at the boundaries of the data set divided into the specified
number of ranges. For instance, /NTILES=4 would cause quartiles to be reported.

The HISTOGRAM subcommand causes the output to include a histogram for each specified
numeric variable. The X axis by default ranges from the minimum to the maximum value
observed in the data, but the MINIMUM and MAXIMUM keywords can set an explicit range.!
Histograms are not created for string variables.

Specify NORMAL to superimpose a normal curve on the histogram.

The PIECHART subcommand adds a pie chart for each variable to the data. Each slice
represents one value, with the size of the slice proportional to the value’s frequency. By
default, all non-missing values are given slices. The MINIMUM and MAXIMUM keywords can be
used to limit the displayed slices to a given range of values. The keyword NOMISSING causes
missing values to be omitted from the piechart. This is the default. If instead, MISSING

1 The number of bins is chosen according to the Freedman-Diaconis rule: 2 x IQR(x)nil/g, where IQR(x)
is the interquartile range of x and m is the number of samples. Note that EXAMINE uses a different
algorithm to determine bin sizes.

Chapter 15: Statistics 156

is specified, then the pie chart includes a single slice representing all system missing and
user-missing cases.

The BARCHART subcommand produces a bar chart for each variable. The MINIMUM and
MAXIMUM keywords can be used to omit categories whose counts which lie outside the spec-
ified limits. The FREQ option (default) causes the ordinate to display the frequency of each
category, whereas the PERCENT option displays relative percentages.

The FREQ and PERCENT options on HISTOGRAM and PIECHART are accepted but not cur-
rently honoured.

The ORDER subcommand is accepted but ignored.

15.2.1 Frequencies Example

Example 15.2 runs a frequency analysis on the sex and occupation variables from the
personnel.sav file. This is useful to get an general idea of the way in which these nominal
variables are distributed.

get file=’personnel.sav’.

frequencies /variables = sex occupation
/statistics = none.

Example 15.2: Running frequencies on the sex and occupation variables

If you are using the graphic user interface, the dialog box is set up such that by default,
several statistics are calculated. Some are not particularly useful for categorical variables,
so you may want to disable those.

(N
2 firstname Variable(s): ; oK
SeX &
aqlastname R
. occupation
El Date of birth P Paste
Annual sa...efore tax
Statistics:
D Mean Cancel
D Standard deviation
D Include missing values
Charts... Frequency Tables... Help
_ J

Screenshot 15.2: The frequencies dialog box with the sex and occupation variables se-
lected

Chapter 15: Statistics 157

From Result 15.2 it is evident that there are 33 males, 21 females and 2 persons for
whom their sex has not been entered.

One can also see how many of each occupation there are in the data. When dealing with
string variables used as nominal values, running a frequency analysis is useful to detect data
input entries. Notice that one occupation value has been mistyped as “Scrientist”. This
entry should be corrected, or marked as missing before using the data.

sex
+-—- —+- ———tm— +- e +
| |Frequency|Percent|Valid Percent|Cumulative Percent|
+-—- —+- ———tm— +- o +
IValid Male | 33| 58.9%| 61.1%] 61.1%]
| Female | 21| 37.5%| 38.9%I 100.0%|
+-—- —+- ———tm— +- e +
|Missing . | 21 3.6%l | |
+-—- —+- ———tm— +- T +
| Total | 56| 100.0%] | |
Fomm Fmmm o o e +
occupation
+-—- -—- ———tmm o - Fmm +
| |Frequency|Percent|Valid Percent|Cumulative Percent|
B et fomm o - e +
|Valid Artist | 8l 14.3%| 14.3%1 14.3%1
[Baker | 21 3.6%l 3.6%1 17.9%1
| Barrister | 1| 1.8%I 1.8%| 19.6%1
| Carpenter | 41 T7.1%]1 7.1%] 26.8%]
| Cleaner | 4] T7.1%1 7.1%] 33.9%1
| Cook | 71 12.5%| 12.5%1 46.4%|
| Manager | 8l 14.3%| 14.3%| 60.7%I
| Mathematician | 41 7.1%]1 7.1%] 67.9%]|
| Painter | 21 3.6%l 3.6%| 71.4%]|
| Payload Specialist]| 11 1.8%] 1.8%] 73.2%1
| Plumber I 5| 8.9%I 8.9%I 82.1%1
| Scientist | 71 12.5%] 12.5%1 94.6%|
[Scrientist | 1 1.8%l 1.8%I 96.4%|
[Tailor | 21 3.6%l 3.6%1 100.0%|
+-—- -—- ———tmm o= - e +
| Total | 56| 100.0%] | I
+-—- -—- e T o - e +

Result 15.2: The relative frequencies of sex and occupation

15.3 EXAMINE

EXAMINE
VARIABLES= varl [var2] ... [varN]
[BY factorl [BY subfactorl]
[factor2 [BY subfactor2]]

[factor3 [BY subfactor3]]
]
/STATISTICS={DESCRIPTIVES, EXTREME|(n)], ALL, NONE}
/PLOT:{BOXPLOT, NPPLOT, HISTOGRAM, SPREADLEVEL[(t)], ALL, NONE}
/CINTERVAL p

Chapter 15: Statistics 158

/COMPARE={GROUPS,VARIABLES}

/ID=identity_variable

/{TOTAL,NOTOTAL}

/PERCENTILE=|percentiles]={HAVERAGE, WAVERAGE, ROUND, AEM-
PIRICAL, EMPIRICAL }

/MISSING={LISTWISE, PAIRWISE} [{EXCLUDE, INCLUDE}]
[{NOREPORT,REPORT}|

The EXAMINE command is used to perform exploratory data analysis. In particular, it is
useful for testing how closely a distribution follows a normal distribution, and for finding
outliers and extreme values.

The VARIABLES subcommand is mandatory. It specifies the dependent variables and
optionally variables to use as factors for the analysis. Variables listed before the first BY
keyword (if any) are the dependent variables. The dependent variables may optionally
be followed by a list of factors which tell PSPP how to break down the analysis for each
dependent variable.

Following the dependent variables, factors may be specified. The factors (if desired)
should be preceded by a single BY keyword. The format for each factor is

factorvar [BY subfactorvar].

Each unique combination of the values of factorvar and subfactorvar divide the dataset
into cells. Statistics are calculated for each cell and for the entire dataset (unless NOTOTAL
is given).

The STATISTICS subcommand specifies which statistics to show. DESCRIPTIVES pro-
duces a table showing some parametric and non-parametrics statistics. EXTREME produces
a table showing the extremities of each cell. A number in parentheses, n determines how
many upper and lower extremities to show. The default number is 5.

The subcommands TOTAL and NOTOTAL are mutually exclusive. If TOTAL appears, then
statistics for the entire dataset as well as for each cell are produced. If NOTOTAL appears,
then statistics are produced only for the cells (unless no factor variables have been given).
These subcommands have no effect if there have been no factor variables specified.

The PLOT subcommand specifies which plots are to be produced if any. Available plots
are HISTOGRAM, NPPLOT, BOXPLOT and SPREADLEVEL. The first three can be used to visualise
how closely each cell conforms to a normal distribution, whilst the spread vs. level plot
can be useful to visualise how the variance differs between factors. Boxplots show you the
outliers and extreme values.?

The SPREADLEVEL plot displays the interquartile range versus the median. It takes an
optional parameter t, which specifies how the data should be transformed prior to plotting.
The given value t is a power to which the data are raised. For example, if t is given as 2,
then the square of the data is used. Zero, however is a special value. If t is 0 or is omitted,
then data are transformed by taking its natural logarithm instead of raising to the power
of t.

2 HISTOGRAM uses Sturges’ rule to determine the number of bins, as approximately 1+ log2(n), where n is
the number of samples. Note that FREQUENCIES uses a different algorithm to find the bin size.

Chapter 15: Statistics 159

When one or more plots are requested, EXAMINE also performs the Shapiro-Wilk test for
each category. There are however a number of provisos:

e All weight values must be integer.

e The cumulative weight value must be in the range [3, 5000]

The COMPARE subcommand is only relevant if producing boxplots, and it is only useful
there is more than one dependent variable and at least one factor. If /COMPARE=GROUPS is
specified, then one plot per dependent variable is produced, each of which contain boxplots
for all the cells. If /COMPARE=VARIABLES is specified, then one plot per cell is produced, each
containing one boxplot per dependent variable. If the /COMPARE subcommand is omitted,
then PSPP behaves as if /COMPARE=GROUPS were given.

The ID subcommand is relevant only if /PLOT=BOXPLOT or /STATISTICS=EXTREME has
been given. If given, it should provide the name of a variable which is to be used to
labels extreme values and outliers. Numeric or string variables are permissible. If the ID
subcommand is not given, then the case number is used for labelling.

The CINTERVAL subcommand specifies the confidence interval to use in calculation of the
descriptives command. The default is 95%.

The PERCENTILES subcommand specifies which percentiles are to be calculated, and
which algorithm to use for calculating them. The default is to calculate the 5, 10, 25, 50,
75, 90, 95 percentiles using the HAVERAGE algorithm.

The TOTAL and NOTOTAL subcommands are mutually exclusive. If NOTOTAL is given and
factors have been specified in the VARTABLES subcommand, then statistics for the unfactored
dependent variables are produced in addition to the factored variables. If there are no factors
specified then TOTAL and NOTOTAL have no effect.

The following example generates descriptive statistics and histograms for two variables
scorel and score2. Two factors are given, viz: gender and gender BY culture. Therefore,
the descriptives and histograms are generated for each distinct value of gender and for each
distinct combination of the values of gender and race. Since the NOTOTAL keyword is given,
statistics and histograms for scorel and score2 covering the whole dataset are not produced.

EXAMINE scorel score2 BY
gender
gender BY culture
/STATISTICS = DESCRIPTIVES
/PLOT = HISTOGRAM
/NOTOTAL.

Here is a second example showing how the examine command can be used to find
extremities.

EXAMINE height weight BY
gender
/STATISTICS = EXTREME (3)
/PLOT = BOXPLOT
/COMPARE = GROUPS
/ID = name.

In this example, we look at the height and weight of a sample of individuals and how they
differ between male and female. A table showing the 3 largest and the 3 smallest values of

Chapter 15: Statistics 160

height and weight for each gender, and for the whole dataset as are shown. In addition, the
/PLOT subcommand requests boxplots. Because /COMPARE = GROUPS was specified, boxplots
for male and female are shown in juxtaposed in the same graphic, allowing us to easily
see the difference between the genders. Since the variable name was specified on the ID
subcommand, values of the name variable are used to label the extreme values.

Warning! If you specify many dependent variables or factor variables for which there
are many distinct values, then EXAMINE will produce a very large quantity of output.

15.4 GRAPH

GRAPH
JHISTOGRAM [(NORMAL)|= var
/SCATTERPLOT [(BIVARIATE)| = varl WITH var2 [BY var3]
/BAR = {summary-function(varl) | count-function} BY var2 [BY var3]
[/MISSING={LISTWISE, VARIABLE} [{EXCLUDE, INCLUDE}]]
[{NOREPORT,REPORT}|

The GRAPH command produces graphical plots of data. Only one of the subcommands
HISTOGRAM, BAR or SCATTERPLOT can be specified, i.e. only one plot can be produced per
call of GRAPH. The MISSING is optional.

15.4.1 Scatterplot

The subcommand SCATTERPLOT produces an xy plot of the data. GRAPH uses the third
variable var3, if specified, to determine the colours and/or markers for the plot. The
following is an example for producing a scatterplot.

GRAPH
/SCATTERPLOT = height WITH weight BY gender.

This example produces a scatterplot where height is plotted versus weight. Depending
on the value of the gender variable, the colour of the datapoint is different. With this plot
it is possible to analyze gender differences for height versus weight relation.

15.4.2 Histogram

The subcommand HISTOGRAM produces a histogram. Only one variable is allowed for the
histogram plot. The keyword NORMAL may be specified in parentheses, to indicate that the
ideal normal curve should be superimposed over the histogram. For an alternative method
to produce histograms see Section 15.3 [EXAMINE], page 157. The following example
produces a histogram plot for the variable weight.

GRAPH
/HISTOGRAM = weight.

15.4.3 Bar Chart

The subcommand BAR produces a bar chart. This subcommand requires that a count-
function be specified (with no arguments) or a summary-function with a variable varl in
parentheses. Following the summary or count function, the keyword BY should be specified
and then a catagorical variable, var2. The values of the variable var2 determine the labels

Chapter 15: Statistics 161

of the bars to be plotted. Optionally a second categorical variable var3 may be specified in
which case a clustered (grouped) bar chart is produced.

Valid count functions are
COUNT The weighted counts of the cases in each category.

PCT The weighted counts of the cases in each category expressed as a percentage of
the total weights of the cases.

CUFREQ The cumulative weighted counts of the cases in each category.

CUPCT The cumulative weighted counts of the cases in each category expressed as a
percentage of the total weights of the cases.

The summary function is applied to varl across all cases in each category. The recognised
summary functions are:

SUM The sum.

MEAN The arithmetic mean.
MAXIMUM The maximum value.
MINIMUM The minimum value.

The following examples assume a dataset which is the results of a survey. Each respon-
dent has indicated annual income, their sex and city of residence. One could create a bar
chart showing how the mean income varies between of residents of different cities, thus:

GRAPH /BAR = MEAN(income) BY city.
This can be extended to also indicate how income in each city differs between the sexes.
GRAPH /BAR = MEAN(income) BY city BY sex.

One might also want to see how many respondents there are from each city. This can
be achieved as follows:

GRAPH /BAR = COUNT BY city.

Bar charts can also be produced using the Section 15.2 [FREQUENCIES], page 154, and
Section 15.6 [CROSSTABS], page 162, commands.

15.5 CORRELATIONS

CORRELATIONS
/VARIABLES = var_list | WITH var_list |

[

/VARIABLES = var_list | WITH var_list |
/VARIABLES = var_list | WITH var_list |

]

[/PRINT={TWOTAIL, ONETAIL} {SIG, NOSIG}]
[/STATISTICS=DESCRIPTIVES XPROD ALL]

Chapter 15: Statistics 162

[/MISSING={PAIRWISE, LISTWISE} {INCLUDE, EXCLUDE} |

The CORRELATIONS procedure produces tables of the Pearson correlation coefficient for
a set of variables. The significance of the coefficients are also given.

At least one VARIABLES subcommand is required. If you specify the WITH keyword, then
a non-square correlation table is produced. The variables preceding WITH, are used as the
rows of the table, and the variables following WITH are used as the columns of the table.
If no WITH subcommand is specified, then CORRELATIONS produces a square, symmetrical
table using all variables.

The MISSING subcommand determines the handling of missing variables. If INCLUDE is
set, then user-missing values are included in the calculations, but system-missing values
are not. If EXCLUDE is set, which is the default, user-missing values are excluded as well as
system-missing values.

If LISTWISE is set, then the entire case is excluded from analysis whenever any variable
specified in any /VARIABLES subcommand contains a missing value. If PATRWISE is set,
then a case is considered missing only if either of the values for the particular coefficient
are missing. The default is PAIRWISE.

The PRINT subcommand is used to control how the reported significance values are
printed. If the TWOTAIL option is used, then a two-tailed test of significance is printed. If
the ONETAIL option is given, then a one-tailed test is used. The default is TWOTAIL.

If the NOSIG option is specified, then correlation coefficients with significance less than
0.05 are highlighted. If SIG is specified, then no highlighting is performed. This is the
default.

The STATISTICS subcommand requests additional statistics to be displayed. The key-
word DESCRIPTIVES requests that the mean, number of non-missing cases, and the non-
biased estimator of the standard deviation are displayed. These statistics are displayed in
a separated table, for all the variables listed in any /VARIABLES subcommand. The XPROD
keyword requests cross-product deviations and covariance estimators to be displayed for
each pair of variables. The keyword ALL is the union of DESCRIPTIVES and XPROD.

15.6 CROSSTABS

CROSSTABS
/TABLES=var_list BY var_list [BY var_Iist]. . .
/MISSING={TABLE,INCLUDE,REPORT}
/FORMAT={TABLES,NOTABLES}
{AVALUE,DVALUE}
/CELLS={COUNT,ROW,COLUMN, TOTAL,EXPECTED,RESIDUAL,SRESIDUAL,
ASRESIDUAL,ALL,NONE}
/COUNT={ASIS,CASE,CELL}
{ROUND, TRUNCATE}
/STATISTICS={CHISQ,PHLCC,LAMBDA,UC,BTAU,CTAU,RISK,GAMMA D,
KAPPA,ETA,CORR,ALL,NONE}
/BARCHART

(Integer mode.)
/VARIABLES=var_list (low,high). ..

Chapter 15: Statistics 163

The CROSSTABS procedure displays crosstabulation tables requested by the user. It can
calculate several statistics for each cell in the crosstabulation tables. In addition, a number
of statistics can be calculated for each table itself.

The TABLES subcommand is used to specify the tables to be reported. Any number
of dimensions is permitted, and any number of variables per dimension is allowed. The
TABLES subcommand may be repeated as many times as needed. This is the only required
subcommand in general mode.

Occasionally, one may want to invoke a special mode called integer mode. Normally,
in general mode, PSPP automatically determines what values occur in the data. In integer
mode, the user specifies the range of values that the data assumes. To invoke this mode,
specify the VARIABLES subcommand, giving a range of data values in parentheses for each
variable to be used on the TABLES subcommand. Data values inside the range are truncated
to the nearest integer, then assigned to that value. If values occur outside this range, they
are discarded. When it is present, the VARIABLES subcommand must precede the TABLES
subcommand.

In general mode, numeric and string variables may be specified on TABLES. In integer
mode, only numeric variables are allowed.

The MISSING subcommand determines the handling of user-missing values. When set
to TABLE, the default, missing values are dropped on a table by table basis. When set
to INCLUDE, user-missing values are included in tables and statistics. When set to REPORT,
which is allowed only in integer mode, user-missing values are included in tables but marked
with a footnote and excluded from statistical calculations.

The FORMAT subcommand controls the characteristics of the crosstabulation tables to be
displayed. It has a number of possible settings:

TABLES, the default, causes crosstabulation tables to be output. NOTABLES, which is
equivalent to CELLS=NONE, suppresses them.

AVALUE, the default, causes values to be sorted in ascending order. DVALUE asserts a
descending sort order.

The CELLS subcommand controls the contents of each cell in the displayed crosstabula-
tion table. The possible settings are:

COUNT Frequency count.
ROW Row percent.
COLUMN Column percent.
TOTAL Table percent.

EXPECTED
Expected value.

RESIDUAL
Residual.

SRESIDUAL
Standardized residual.

ASRESIDUAL
Adjusted standardized residual.

Chapter 15: Statistics 164

ALL All of the above.
NONE Suppress cells entirely.

‘/CELLS’ without any settings specified requests COUNT, ROW, COLUMN, and TOTAL. If
CELLS is not specified at all then only COUNT is selected.

By default, crosstabulation and statistics use raw case weights, without rounding. Use
the /COUNT subcommand to perform rounding: CASE rounds the weights of individual
weights as cases are read, CELL rounds the weights of cells within each crosstabulation
table after it has been constructed, and ASIS explicitly specifies the default non-rounding
behavior. When rounding is requested, ROUND, the default, rounds to the nearest integer
and TRUNCATE rounds toward zero.

The STATISTICS subcommand selects statistics for computation:

CHISQ
Pearson chi-square, likelihood ratio, Fisher’s exact test, continuity correction,
linear-by-linear association.

PHI Phi.

CC Contingency coefficient.

LAMBDA Lambda.

ucC Uncertainty coefficient.
BTAU Tau-b.

CTAU Tau-c.

RISK Risk estimate.

GAMMA Gamma.

D Somers’ D.

KAPPA Cohen’s Kappa.

ETA Eta.

CORR Spearman correlation, Pearson’s r.
ALL All of the above.

NONE No statistics.

Selected statistics are only calculated when appropriate for the statistic. Certain statis-
tics require tables of a particular size, and some statistics are calculated only in integer
mode.

‘/STATISTICS’ without any settings selects CHISQ. If the STATISTICS subcommand is
not given, no statistics are calculated.

The ‘/BARCHART’ subcommand produces a clustered bar chart for the first two variables
on each table. If a table has more than two variables, the counts for the third and subsequent
levels are aggregated and the chart is produced as if there were only two variables.

Please note: Currently the implementation of CROSSTABS has the following limitations:

e Significance of some symmetric and directional measures is not calculated.

Chapter 15: Statistics 165

e Asymptotic standard error is not calculated for Goodman and Kruskal’s tau or sym-
metric Somers’ d.

e Approximate T is not calculated for symmetric uncertainty coefficient.

Fixes for any of these deficiencies would be welcomed.

15.6.1 Crosstabs Example

A researcher wishes to know if, in an industry, a person’s sex is related to the person’s occu-
pation. To investigate this, she has determined that the personnel.sav is a representative,
randomly selected sample of persons. The researcher’s null hypothesis is that a person’s
sex has no relation to a person’s occupation. She uses a chi-squared test of independence
to investigate the hypothesis.

(R

get file="personnel.sav".

crosstabs
/tables= occupation by sex
/cells = count expected
/statistics=chisq.

Example 15.3: Running crosstabs on the sex and occupation variables

The syntax in Example 15.3 conducts a chi-squared test of independence. The line
/tables = occupation by sex indicates that occupation and sex are the variables to be
tabulated. To do this using the graphic user interface you must place these variable names
respectively in the ‘Row’ and ‘Column’ fields as shown in Screenshot 15.3.

Chapter 15: Statistics 166
~ N
occupation . 1
eanlastname , P
Date of birth Paste
E] Annual salary before tax
Columns
Cancel
Sex
]
Reset
Format... I Statistics... I Cells... Help

J

Screenshot 15.3: The Crosstabs dialog box with the sex and occupation variables selected

Similarly, the ‘Cells’ button shows a dialog box to select the count and expected

options. All other cell options can be deselected for this test.

You would use the ‘Format’ and ‘Statistics’ buttons to select options for the FORMAT
and STATISTICS subcommands. In this example, the ‘Statistics’ requires only the ‘Chisq’
option to be checked. All other options should be unchecked. No special settings are required

from the ‘Format’ dialog.

As shown in Results 15.1 CROSSTABS generates a contingency table containing the ob-
served count and the expected count of each sex and each occupation. The expected count

is the count which would be observed if the null hypothesis were true.

The significance of the Pearson Chi-Square value is very much larger than the normally
accepted value of 0.05 and so one cannot reject the null hypothesis. Thus the researcher
must conclude that a person’s sex has no relation to the person’s occupation.

Chapter 15: Statistics 167

Summary

T T +
| | Cases

| o B et o +
| | Valid | Missing | Total |
| o +—t——— ot +
| | N|Percent|N|Percent| N|Percent|
e -t +—+ ———t -+
|occupation x sex|54| 96.4%121 3.6%156] 100.0%|
e s e s +

occupation X sex

e -— -— + ———m— +
| | sex | |
| o + |
| |Male|Female|Totall
- -— -— s e o +
|occupation Artist Count | 2| 6l 8|
| Expected|4.89| 3.11| .15|
T -— s e SRR e +
| Baker Count | 1] 1] 2]
| Expected|1.22] .781 .04]|
e - + - +———— +
| Barrister Count | (o] 1] 1]
| Expected| .61]| .39 .02|
| e B Rttt e +
| Carpenter Count | 3] 1] 4]
| Expected|2.44| 1.56] .07|
| e ot ——— +————= +
| Cleaner Count | 4| ol 4|
| Expected|2.44| 1.56| .07|
| e -— e e S e +
| Cook Count | 3| 2| 5|
| Expected|3.06| 1.94] .09]|
1 e - + 4 +———— +
| Manager Count | 4| 4| 8|
| Expected|4.89] 3.11] .15|
| o —— +o———- +
| Mathematician Count | 3| 1] 4]
| Expected|2.44| 1.56] .07|
| e s +-——— +
| Painter Count | 1] 1] 2|
| Expected|1.22| .781 .04]
| e -— s e SR e +
| Payload Specialist Count | 1] ol 1]
| Expected| .61 .39 .02|
e -— + -t +————- +
| Plumber Count | 5] ol 5]
| Expected|3.06] 1.94] .09]|
| e B S to——— +
| Scientist Count | 5] 21 71
| Expected|4.28] 2.72] .13|
| e tom e +
| Scrientist Count | ol 1] 1]
| Expected| .61 .391 .02|
T -— e e TR o +
| Tailor Count | 1] 1] 2|
| Expected|1.22] .78 .04]|
e -— -— e e +
| Total Count | 33| 21| 54|
| Expected| .61]| .39] 1.00]
B et B e o +

Chi-Square Tests
+-—- e e +

Chapter 15: Statistics 168

15.7 CTABLES

CTABLES has the following overall syntax. At least one TABLE subcommand is required:

CTABLES
... global subcommands. . .
[/TABLE azis [BY axis [BY awis|]
... per-table subcommands. ..]. ..

where each axis may be empty or take one of the following forms:

variable

variable [{C | S}]

aris + axis

aris > axis

(azis)

axis [summary [string] [format]]

The following subcommands precede the first TABLE subcommand and apply to all of

the output tables. All of these subcommands are optional:

/FORMAT
[MINCOLWIDTH={DEFAULT | width}]
[MAXCOLWIDTH={DEFAULT | width}]
[UNITS={PDINTS | INCHES | CM}]
[EMPTY={ZERO | BLANK | string}]
[MISSING=string]
/VLABELS
VARIABLES=variables
DISPLAY:{DEFAULT | NAME | LABEL | BOTH | NONE}
/SMISSING {VARIABLE | LISTWISE}
/PCOMPUTE &postcompute=EXPR (expression)
/PPROPERTIES &postcompute. . .
[LABEL=string]
[FORMAT=[summary format]. . .]
[HIDESOURCECATS={NO | YES}
/WEIGHT VARIABLE=variable
/HIDESMALLCOUNTS COUNT=count

The following subcommands follow TABLE and apply only to the previous TABLE. All of
these subcommands are optional:

/SLABELS
[POSITION={COLUMN | ROW | LAYER}]
[VISIBLE={YES | NO}|
/CLABELS {AUTO | {ROWLABELS|COLLABELS}={0PPOSITE|LAYER}}
/CATEGORIES VARIABLES=variables
{[value, value. . .]
| [ORDER={A | D}]
[KEY={VALUE | LABEL | summary (variable) }|
[MISSING={EXCLUDE | INCLUDE}|}
[TOTAL={NO | YES} [LABEL=string] [POSITION={AFTER | BEFORE}||
[EMPTY={ INCLUDE | EXCLUDE}|

Chapter 15: Statistics 169

/TITLES
[TITLE=string. . .]
[CAPTION=string. . .]
[CORNER=string. . .]
The CTABLES (aka “custom tables”) command produces multi-dimensional tables from
categorical and scale data. It offers many options for data summarization and formatting.
This section’s examples use data from the 2008 (USA) National Survey of Drinking and
Driving Attitudes and Behaviors, a public domain data set from the (USA) National High-
way Traffic Administration and available at https://data.transportation.gov. PSPP
includes this data set, with a modified dictionary, as examples/nhtsa.sav.

15.7.1 Basics

The only required subcommand is TABLE, which specifies the variables to include along each
axis:
/TABLE rows [BY columns [BY layers]]

In TABLE, each of rows, columns, and layers is either empty or an axis expression that
specifies one or more variables. At least one must specify an axis expression.

15.7.1.1 Categorical Variables

An axis expression that names a categorical variable divides the data into cells according
to the values of that variable. When all the variables named on TABLE are categorical,
by default each cell displays the number of cases that it contains, so specifying a single
variable yields a frequency table, much like the output of the FREQUENCIES command (see
Section 15.2 [FREQUENCIES], page 154):

CTABLES /TABLE=ageGroup.

Custom Tables

- -— —tm———— +
| |Count |
- -— s
|Age group 15 or younger| ol
| 16 to 25 | 1099
| 26 to 35 | 967
| 36 to 45 | 1037]|
| 46 to 55 | 1175]
| 56 to 65 | 1247]
| 66 or older | 1474|
- -— —tm———— +

Specifying a row and a column categorical variable yields a crosstabulation, much like the
output of the CROSSTABS command (see Section 15.6 [CROSSTABS], page 162):

CTABLES /TABLE=ageGroup BY gender.

Custom Tables
-— -— ——tm +

+
| |S3a. GENDER: |
|
|
|
|

+———— +o———- +

| Male|Femalel|
- O — +

|Count| Count|
e - T +

|Age group 15 or younger| ol ol

https://data.transportation.gov

Chapter 15: Statistics

| 16 to 25 | 594| 505|
| 26 to 35 | 476] 491
| 36 to 45 | 489| 548|
| 46 to 55 | 5261 649
| 56 to 65 | 5161 731
| 66 or older | 531| 943
+-—- -— —-—t-- + -—+

The >’ “nesting” operator nests multiple variables on a single axis, e.g.:

170

CTABLES /TABLE likelihoodOfBeingStoppedByPolice BY ageGroup > gender.

Custom Tables

+-—= -— -— + -— -—+
	86. In the past year, have you hosted a
	social event or party where alcohol was
	served to adults?
o o +	
	Yes
B st B e e +	
	Count
+-—= - - o o +	
Age 15 or S3a. Male	ol 0l
group younger GENDER: Femalel	0l ol
e B et L e e et o +	
16 to 25 S3a. Male	208
GENDER: Femalel 202 3031	
- ——_——————————— + -— ———tm +	
26 to 35 S3a. Male	225
GENDER: Female] 242 249	
- -— -— + ———t——— +	
36 to 45 S3a. Male	223
GENDER: Femalel 240 3071	
- - - e o +	
46 to 55 S3a. Male	201 325
GENDER: Femalel 282	366
e o o +	
56 to 65 S3a. Male	196
GENDER: Femalel 279 452	
- ——_——————————— o e +	
66 or S3a. Male	162
older GENDER: Female] 243	7001
+-—= -— -— + e +

The ‘+’ “stacking” operator allows a single output table to include multiple data analyses.
With ‘+’, CTABLES divides the output table into multiple sections, each of which includes
an analysis of the full data set. For example, the following command separately tabulates

age group and driving frequency by gender:

CTABLES /TABLE ageGroup + freqOfDriving BY gender.

Custom Tables
e T — +
| |S3a. GENDER: |
| o o +
| | Male|Female]|
| o +o—— +
| |Count| Count|
——————— 4
|Age group 15 or younger | ol ol
| 16 to 25 | 594| 505]

+—— —_ —_ —_

Chapter 15: Statistics 171

| 26 to 35 | 476| 491
[36 to 45 | 489] 548|
[46 to 55 | 526] 649
| 56 to 65 | 516l 731
| 66 or older | 531] 943
e o o +
1. How often do you usually drive a car or Every day	2305	2362
other motor vehicle? Several days a week	440] 834	
Once a week or less	125] 236	
Only certain times	58	72
a year	I I	
[Never | 192] 348|
i o o +

When ‘+’ and ‘>’ are used together, ‘>’ binds more tightly. Use parentheses to override
operator precedence. Thus:
CTABLES /TABLE hasConsideredReduction + hasBeenCriticized > gender.
CTABLES /TABLE (hasConsideredReduction + hasBeenCriticized) > gender.
Custom Tables

+-—= -—- -—- -—- -—- —4———— +
| | Count |
+-—= - -—- -—- —t———— +
|26. During the last 12 months, has there been a Yes | 513|
|time when you felt you should cut down on your - - e +
|drinking? No | 3710]
A -—- —t————- +
|27. During the last 12 months, has there been a Yes S3a. Male | 135]|
|time when people criticized your drinking? GENDER: Female| 49|
| - - —4———— +
| No S3a. Male | 1916]
[GENDER: Female| 2126
+-—= -—- -—- -—- -—- —4————- +

Custom Tables

o o +
| | Count |
o= -—- e N +
|26. During the last 12 months, has there been a Yes S3a. Male | 333]
|time when you felt you should cut down on your GENDER: Female| 180]|
|drinking? mmmm————————————— +o———= +
| No S3a. Male | 1719]|
| GENDER: Female| 1991]|
e L -—- —4————- +
|27. During the last 12 months, has there been a Yes S3a. Male | 135]|
|time when people criticized your drinking? GENDER: Female| 49|
| - -— —4————- +
| No S3a. Male | 1916]|
[GENDER: Female| 2126
+-—= -—- -—- -—- -—- - +

15.7.1.2 Scalar Variables

For a categorical variable, CTABLES divides the table into a cell per category. For a scalar
variable, CTABLES instead calculates a summary measure, by default the mean, of the values
that fall into a cell. For example, if the only variable specified is a scalar variable, then the
output is a single cell that holds the mean of all of the data:

CTABLES /TABLE age.

Chapter 15: Statistics 172

Custom Tables

+-—- -— +-———+
| [Mean|
+-—- -—- +-———+
|D1. AGE: What is your age?| 48|
B o+

A scalar variable may nest with categorical variables. The following example shows the
mean age of survey respondents across gender and language groups:

CTABLES /TABLE gender > age BY region.
Custom Tables

R - - ———to—— e +
| |Was this interview conducted in English|
| | or Spanish? I
| o o +
| | English | Spanish |
| o e Rttt +
| | Mean | Mean |
R - - ———t———- + +
ID1. AGE: What is S3a. Male | 46| 371
|your age? GENDER: Female| 51| 39|
B - s e +

The order of nesting of scalar and categorical variables affects table labeling, but it does
not affect the data displayed in the table. The following example shows how the output
changes when the nesting order of the scalar and categorical variable are interchanged:

CTABLES /TABLE age > gender BY region.
Custom Tables

o= -—- -—- e e e e +
| |Was this interview conducted in Englishl|
| | or Spanish? |
| o B et +
| | English I Spanish |
| o e +
| | Mean | Mean |
+-—= -—- -—- ———t———= et +
|S3a. Male D1. AGE: What is | 46| 37|
| GENDER : your age? | | |
| mmemmmmmm e R ettt e +
| Female D1. AGE: What is | 51| 39|
| your age? | | |
o Fomm e +

Only a single scalar variable may appear in each section; that is, a scalar variable may
not nest inside a scalar variable directly or indirectly. Scalar variables may only appear on
one axis within TABLE.

15.7.1.3 Overriding Measurement Level

By default, CTABLES uses a variable’s measurement level to decide whether to treat it as
categorical or scalar. Variables assigned the nominal or ordinal measurement level are
treated as categorical, and scalar variables are treated as scalar.

When pspPP reads data from a file in an external format, such as a text file, variables’
measurement levels are often unknown. If CTABLES runs when a variable has an unknown
measurement level, it makes an initial pass through the data to guess measurement levels

Chapter 15: Statistics 173

using the rules described in an earlier section (see [Measurement Level], page 30). Use the
VARIABLE LEVEL command to set or change a variable’s measurement level (see Section 11.17
[VARIABLE LEVEL], page 105).

To treat a variable as categorical or scalar only for one use on CTABLES, add ‘[C]’ or
‘[S]’, respectively, after the variable name. The following example shows the output when
variable monthDaysMinldrink is analyzed as scalar (the default for its measurement level)
and as categorical:

CTABLES
/TABLE monthDaysMinldrink BY gender
/TABLE monthDaysMinldrink [C] BY gender.

Custom Tables

+-—= -—- -—- -—- -—- Fmmmm +
| |S3a. GENDER: |
| B e +
| |Male| Femalel
| ot ——— +
| |Mean| Mean |
o -—- + ot
|20. On how many of the thirty days in this typical month did youl 71 5|
|have one or more alcoholic beverages to drink? | | |
+-—- -—- -— e pom— +

Custom Tables

+-—= -—- -—- -—- -—- + +

|S3a. GENDER: |
+-——— +o———- +

|
|
| | Male|Femalel
|
|

R fm————— +
|Count| Count|

|20. On how many of the thirty days in this typical month None | 152] 258|
|did you have one or more alcoholic beverages to drink? 1 | 403| 653|
[2 | 284] 324
| 3 | 1691 215]|
| 4 | 178] 143
| 5 [107] 106|
[6 | 67l 59|
[7 | 31l 11|
| 8 | 101] 74|
| 9 | 6l 4|
[10 | 95| 751
I 11 | 4| ol
[12 | 58] 33|
| 13 | 31 2|
| 14 | 13| 3|
[15 I 791 58]
| 16 | 101 61
[17 | 4| 21
| 18 | 5| 4]
[19 | 21 ol
| 20 | 105] 47|
[21 | 2| ol
[22 | 3] 3|
| 23 | 0l 3|
[24 | 3] ol

Chapter 15: Statistics 174

25	35l 25
26	1] 1
27	31 3
28	13] 8
29	3l 3l
Every	104]
day	
B e et T +————- +o————- +

15.7.2 Data Summarization

The CTABLES command allows the user to control how the data are summarized with sum-
mary specifications, syntax that lists one or more summary function names, optionally
separated by commas, and which are enclosed in square brackets following a variable name
on the TABLE subcommand. When all the variables are categorical, summary specifications
can be given for the innermost nested variables on any one axis. When a scalar variable is
present, only the scalar variable may have summary specifications.

The following example includes a summary specification for column and row percentages
for categorical variables, and mean and median for a scalar variable:

CTABLES
/TABLE=age [MEAN, MEDIAN] BY gender
/TABLE=ageGroup [COLPCT, ROWPCT] BY gender.
Custom Tables

+-—- - + - ———+
I | S3a. GENDER: |
| +-- + -———+
| | Male | Female |
| o —— ot ——— +
| |Mean|Median|Mean|Median|
o + + + + ———+
ID1. AGE: What is your age?| 46| 45| 50| 52|
B e L e e S e + to————— + ———+

Custom Tables

e T +
| I S3a. GENDER: |
| Fomm o +
| | Male | Female |
| o +- + - + -+
| |Column %|Row %|Column %|Row %]l
- -— ——t——————— e +- + + -+
|Age group 15 or younger| 0% N 0% -
| 16 to 25 | 19.0%154.0%1 13.1%146.0%|

26 to 35 15.2%149.2%| 12.7%150.8%|

36 to 45 15.6%147.2%| 14.2%152.8%|
16.8%144.8%1 16.8%155.2%]|
56 to 65 16.5%141.4%| 18.9%158.6%|

|
|
| 46 to 55
|
|

|
|
|
|
66 or older | 17.0%136.0%] 24.4%164.0%|
+

e Fo——— tom B +

A summary specification may override the default label and format by appending a
string or format specification or both (in that order) to the summary function name. For
example:

CTABLES /TABLE=ageGroup [COLPCT ’Gender %’ PCT5.0,
ROWPCT ’Age Group %’ PCT5.0]

Chapter 15: Statistics

BY gender.
Custom Tables
o e +
[| S3a. GENDER: |
| Fomm e +
| | Male | Female |
| Fo—— o R ettt o +
| |Gender %|Age Group %|Gender %|Age Group %l
+-—= - e +- + B +
|Age group 15 or younger| 0% N 0% N
| 16 to 25 | 19%1 5471 13%1 46%1
| 26 to 35 I 15%1 4971 13%| 51%1
| 36 to 45 I 16%| a7l 14%1 53%1
| 46 to 55 I 17%]1 4571 17%1 55%1
| 56 to 65 | 16%| 417%1 19%| 59%1
| 66 or older | 17%1 36| 247, 647
B e e e e o +- —————t —m - +

In addition to the

special formats:

NEGPARENw. d

NEQUALw.d

PARENw.d

PCTPARENw.d

175

standard formats, CTABLES allows the user to specify the following

Encloses ne
parentheses.
Adds a N= prefix.

gative numbers

Encloses all numbers in parentheses.

Encloses all numbers in parentheses
with a ‘%’ suffix.

42.96 (42.96)
N=42.96 N=-42.96
(42.96) (-42.96)

(42.96%) (-42.96%)

Parentheses provide a shorthand to apply summary specifications to multiple variables.
For example, both of these commands:

CTABLES /TABLE=ageGroup [COLPCT] + membersOver16[COLPCT] BY gender.
CTABLES /TABLE=(ageGroup + membersOver16) [COLPCT] BY gender.

produce the same output shown below:

Custom

Tables

+
I
|
I
|
|
[

+——

e B +

| S3a. GENDER: |

+o— +o—— +

| Male | Female]

Column| Column]|

%

|Age group

+ ___
|S1. Including yourself, how many members of this

|household are age 16 or older?

|
|
—_—
15 or |
younger |
16 to 25 | 19
26 to 35 | 15.
36 to 45 | 15.
46 to 55 | 16.
56 to 65 | 16.
66 or older| 17.
+
None |
1 | 21
2 | 61

%

——————— -
.0%]1 0%

| |

0% 13.1%]

2% 12.7%1

6% 14.2%]

8%l 16.8%]

5%1 18.9%I

0%l 24.4%]
——————— o
0% 0%

.4%| 35.0%]

9%l 52.3%I

Chapter 15: Statistics 176

| 3 | 11.0%I 8.2%]1
| 4 | 4. 2% 3.2%1
| 5 | 1.1%I 9%
| 6 or more | YAl YA
- -— -— S pomm—— o +

The following sections list the available summary functions. After each function’s name
is given its default label and format. If no format is listed, then the default format is the
print format for the variable being summarized.

15.7.2.1 Summary Functions for Individual Cells

This section lists the summary functions that consider only an individual cell in CTABLES.
Only one such summary function, COUNT, may be applied to both categorical and scale
variables:

COUNT (“Count”, F40.0)
The sum of weights in a cell.

If CATEGORIES for one or more of the variables in a table include missing values
(see Section 15.7.5 [CTABLES Per-Variable Category Options|, page 184), then
some or all of the categories for a cell might be missing values. COUNT counts
data included in a cell regardless of whether its categories are missing.

The following summary functions apply only to scale variables or totals and subtotals
for categorical variables. Be cautious about interpreting the summary value in the latter
case, because it is not necessarily meaningful; however, the mean of a Likert scale, etc. may
have a straightforward interpreation.

MAXIMUM (“Maximum”)
The largest value.

MEAN (“Mean”)
The mean.

MEDIAN (“Median”)
The median value.

MINIMUM (“Minimum”)
The smallest value.

MISSING (“Missing”)
Sum of weights of user- and system-missing values.

MODE (“Mode”)
The highest-frequency value. Ties are broken by taking the smallest mode.

PTILE n (“Percentile n”)
The nth percentile, where 0 < n < 100.

RANGE (“Range”)
The maximum minus the minimum.

SEMEAN (“Std Error of Mean”)
The standard error of the mean.

Chapter 15: Statistics 177

STDDEV (“Std Deviation”)
The standard deviation.

SUM (“Sum”)
The sum.

TOTALN (“Total N”, F40.0)
The sum of weights in a cell.

For scale data, COUNT and TOTALN are the same.

For categorical data, TOTALN counts missing values in excluded categories, that
is, user-missing values not in an explicit category list on CATEGORIES (see
Section 15.7.5 [CTABLES Per-Variable Category Options]|, page 184), or user-
missing values excluded because MISSING=EXCLUDE is in effect on CATEGORIES,
or system-missing values. COUNT does not count these.

See Section 15.7.9.2 [CTABLES Missing Values for Summary Variables],
page 191, for details of how CTABLES summarizes missing values.

VALIDN (“Valid N”, F40.0)
The sum of valid count weights in included categories.

For categorical variables, VALIDN does not count missing values regardless of
whether they are in included categories via CATEGORIES. VALIDN does not count
valid values that are in excluded categories. See Section 15.7.9.2 [CTABLES
Missing Values for Summary Variables|, page 191, for detail